BURNS COOLEY DENNIS, INC.

GEOTECHNICAL AND MATERIALS ENGINEERING CONSULTANTS

SHRINKAGE AND DURABILITY STUDY OF BRIDGE DECK CONCRETE

State Study 216 Project No. SPR-1(54)/105366 139000

Prepared for Mississippi Department of Transportation

> Prepared by Robert L. Varner, P.E.

> > December, 2010

1. Report No. FHWA/MS-DOT-RD-09-	216	2. Government A	ccess	sion No.	3. Recipient's	Catalog No.	
4. Title and Subtitle		L		5. Report Dat D	e ecember 2010		
Shrinkage and Durabil	ity Stu	dy of Bridge Deck	Con	crete	6. Performing BC	Organization Code CD No. 080739	
7. Author Robe	rt L. V	arner, P.E.			8. Performing Organization Report No. MS-DOT-RD-09-216		
9. Performing Organization	Name Denni	e and Address			10. Work Uni	t No. (TRAIS)	
Post Office Bo	128	2.8					
Jackson, Miss	issippi	39236			11. Contract o	or Grant No. CS 00002386	
12. Sponsoring Agency Nat	me and	d Address			13. Type Rep	ort and Period Covered	
Mississippi De	partm	ent of Transportation	on		I	Final Report	
P.O. Box 1850	0215	1950			(March 20	09 to December 2010)	
Jackson, MS 5	9213-1	1830			14. Sponsorin	ig Agency Code	
 15. Supplementary Notes MDOT State Study 216 Project No. SPR-1(54)/105366 139000 16. Abstract: The Mississippi Department of Transportation 					is incorporati	ing changes to material	
cracking. These changes are currently being i evaluate MDOT's new Class BD concrete. T Department of Transportation's special provisi				emented class of for low of	into a limited concrete was cracking, high	number of projects to modeled after Kansas performance concrete	
which was based on stud	lies co	onducted by the	Univ	ersity of	Kansas. Whi	le Class BD concrete is	
based on recommendation	ons o	t the research p	erfor	med at t	he University	of Kansas, there was	
with gravel and cementit	ious n	of engineers to e	≥valu ∍ in I	Mississin	hi This resea	rch generates shrinkage	
and permeability data for	· thirty	mixtures develo	ned y	with read	ilv available n	naterials in Mississippi	
17. Key Words		18.	Distributio	n Statement			
Aggregate Gradation Optimization, Bridge Deck,							
Cementitious Material, Coarseness Factor Chart,					Unclass	ified	
Change Departure Mixture, Durability, Length							
Shrinkage Cracks							
19. Security Classif. (of	20. Se	ecurity Classif. (of	this	21. No. c	of Pages	22. Price	
this report)	page)	•			-		
Unclassified		Unclassified			181		

Technical Report Documentation Page

Reproduction of completed page authorized

DISCLAIMER

The contents of this report reflect the views of the authors, who are responsible for the facts and accuracy of the data presented herein. The contents do not necessarily reflect the views or policies of the Mississippi Department of Transportation or the Federal Highway Administration. This report does not constitute a standard, specification, or regulation.

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government and the State of Mississippi assume no liability for its contents or use thereof.

The United States Government and the State of Mississippi do not endorse products or manufacturers. Trade or manufacturer's names appear herein solely because they are considered essential to the object of this report.

Acknowledgements

This work was performed under the supervision of the MDOT TAC Committee:

Research Division: Bill Barstis, P.E. Materials Division: James Williams, P.E. Mike O'Brien, P.E. Jeremy Robinson, P.E. Adam Browne, P.E

This work was accomplished with the support of Burns Cooley Dennis' staff and management and the technical knowledge and experience of the following: R.C. Ahlrich, Ph.D., P.E.

L. Allen Cooley, Jr., Ph.D.

Abstract

Shrinkage induced cracks have been a long term occurrence in Mississippi bridge decks, but have received little attention due to the apparent lack of severity relative to the longevity and serviceability of the bridges. However, these cracks can compromise the structural integrity and durability of bridge decks by providing easy access channels for water to carry chloride ions to the reinforcing steel and cause corrosion. The Mississippi Department of Transportation (MDOT) is incorporating changes to material specifications and construction procedures for bridge decks in an effort to reduce shrinkage cracking. These changes are currently being implemented into a limited number of projects to evaluate MDOT's new Class BD concrete. This class of concrete was modeled after Kansas Department of Transportation's special provision for low cracking, high performance concrete which was based on studies conducted by the University of Kansas. A significant aspect of this special provision is an effort to reduce the cementitious paste content of concrete mixtures used on bridge decks because as the paste content increases, the potential for shrinkage and cracking increases. While Class BD concrete is based on recommendations of the research performed at the University of Kansas, there was limited data available for MDOT engineers to evaluate shrinkage characteristics of concrete made with gravel and cementitious materials available in Mississippi. This research generates shrinkage and permeability data for thirty mixtures developed with readily available materials in Mississippi. It focuses on the use of cementitious material to reduce shrinkage and permeability. Cementitious materials used in this study include Type I and Type GU cement, Class C fly ash, Class F fly ash, and ground granulated blast furnace slag.

Abstract	iii
Table of Tables	vi
Table of Figures	vii
Chapter 1 - Introduction	1
Objective	9
Approach	9
Chapter 2 - Materials	16
Hydraulic Cement	16
Type I	16
Type GU	16
Supplementary Cementitious Materials (SCMs)	17
Fly Ash	18
Ground Granulated Blast Furnace Slag (GGBFS)	19
Aggregates	23
Crushed Limestone	23
Gravel	23
Admixtures	27
Water Reducer	27
Air Entraining	28
Chapter 3 - Mixes	29
KU Mix	29
MDOT Class AA	31
Research Mixes	32
Blended Aggregates	32
MDOT Class BD	33
Chapter 4 - Laboratory Testing	40
Mixing	40
Plastic Properties	40
Compressive Strength	46
Length Change of Hardened Concrete	46
Length Change - Sample Preparation	46
Length Change - Initial Testing	47
Length Change - Specimen Dry Storage and Testing	47
Length Change - Calculations	47
Resistance to Chloride Ion Penetrability	50
Penetrability - Sample Preparation	50
Penetrability - Specimen Preparation	50
Penetrability - Testing Procedure	51
Chapter 5 - Results	53
Compressive Strength	53
Compressive Strength: Mixes 1 – 15	53
Compressive Strength: Mixes 16 - 30	54

Table of Contents

Length Change	55
Length Change – Mixes 1 – 15	56
Length Change – Mixes 16 – 30	56
Penetrability	57
Chapter 6 – Discussion of Results	60
Compressive Strength	60
Compressive Strength: Research Mixes 4 – 11	60
Compressive Strength: Research Mixes 19 – 26	63
Compressive Strength: Mixes 1, 14, and 15.1	66
Compressive Strength: Mixes 16, 29, and 30	67
Compressive Strength: MDOT Class AA Mixes 2.1, 3, 17, and 18	69
Compressive Strength: Blended Aggregate Mixes 12 and 13	70
Compressive Strength: Blended Aggregate Mixes 27.1 and 28	71
Length Change	72
Length Change – KU Mixes 1 and 16	72
Length Change – MDOT Class AA Mixes 2.1, 3, 17, and 18	74
Length Change: Research Mixes 4 – 11 and 19 - 26	75
Length Change – Blended Aggregate Mixes 12, 13, 27.1, and 28	80
Length Change – MDOT BD Mixes 14, 15.1, 29, and 30	82
Shrinkage VS Cementitious Material and Total Cementitious Content	83
Chloride Ion Penetrability	85
Chloride Ion Penetrability Data	86
Chapter 7 – Analysis of Shrinkage Data	
Influence of SCMs on Shrinkage	
Influence of Aggregate Gradation Optimization on Shrinkage	
Chapter 8 - Statistical Analysis	
Chapter 9 - Conclusions and Recommendations	106
Conclusions	106
Recommendations	107
Research Opportunities	108
References	109
Appendix A – Raw Data of Concrete Mixtures	111
Appendix B – Raw Data for Shrinkage and Permeability	142

Table of Tables

Table 1: Combined Percent Retained on Individual Sieves - ACI, KDOT, MDOT	7
Table 2: Experimental Mixtures	12
Table 3: Type I Portland Cement - Chemical and Physical Properties	20
Table 4: Type GU Cement - Physical Properties	21
Table 5: Class C Fly Ash - Chemical and Physical Properties	21
Table 6: Class F Fly Ash - Chemical and Physical Properties	22
Table 7: GGBFS - Chemical and Physical Properties	22
Table 8: Crushed Limestone - Source Number 1	24
Table 9: Crushed Limestone - Source Number 2	25
Table 10: Gravel Aggregate - Source Number 1	26
Table 11: Gravel Aggregate - Source Number 2	27
Table 12: Key Mix Properties - KU, MDOT Class BD, and MDOT Class AA	34
Table 13: Mixture Parameters	35
Table 14: Plastic Properties - Mixes 1 - 15	42
Table 15: Plastic Properties - Mixes 16 - 30	43
Table 16: Average Compressive Strength Ranking - Mixes 1 - 15	54
Table 17: Average Compressive Strength Ranking Mixes 16-30	55
Table 18: Average Percent Length Change and Ranking – Mixes 1 - 15	56
Table 19: Average Percent Length Change and Ranking – Mixes 16 through 30	57
Table 20: Chloride Ion Penetrability - Mixes 1 - 15.1	58
Table 21: Chloride Ion Penetrability - Mixes 16 - 30	59
Table 22: Chloride Ion Penetrability based on Charge Passed	86
Table 23: Mixture Parameters, Plastic Properties, Test Results - Mixes 1-15.1 (Aggregate S	Source
1)	90
Table 24: Mixture Parameters, Plastic Properties, Test Results - Mixes 16-30 (Aggregate S	ource
2)	91
Table 25: Experimental Design Including Factors and Levels	99
Table 26: Results of ANOVA for 365 Day Penetrability Test Results	100
Table 27: Results of DMRT Rankings for 365 Days Penetrability Test Results	101
Table 28: Results ANOVA for 224 Day Shrinkage Test Results	104
Table 29: Results of DMRT Rankings for 224 Day Shrinkage Test Results	105

Table of Figures

Figure 1: Coarseness Factor Chart	8
Figure 2: Sampling Gravel Aggregate Source No. 1	. 30
Figure 3: KU Mix Laboratory Samples	. 31
Figure 4: KU Mix - Combined Individual Percent	. 36
Figure 5: MDOT Class AA - Combined Individual Percent Retained	. 36
Figure 6: MDOT Class AA with 25% C Fly Ash - Combined Individual Percent Retained	. 37
Figure 7: Research Mixes - Combined Individual Percent Retained	. 37
Figure 8: Blended Aggregates with 25% C Fly Ash-Combined Individual Percent Retained	. 38
Figure 9: Blended Aggregates 25% F Fly Ash - Combined Individual Percent Retained	. 38
Figure 10: MDOT BD - Combined Individual Percent Retained	. 39
Figure 11: MDOT BD 50% GGBFS - Combined Individual Percent Retained	. 39
Figure 12: Unit Weight Testing	. 44
Figure 13: Slump Testing	. 44
Figure 14: Air Content Testing	. 45
Figure 15: Curing Cylinders	. 45
Figure 16: Comparator Reading of Standard Bar	. 49
Figure 17: Comparator Reading of Concrete Specimen	. 49
Figure 18: Penetrability Specimen in Test Cell	. 52
Figure 19: Chloride Ion Penetrability Apparatus	. 52
Figure 20: Average Compressive Strength VS Age Mixes 4-7	. 62
Figure 21: Average Compressive Strength VS Age Mixes 8-11	. 63
Figure 22: Average Compressive Strength VS Age - Mixes 19-22	. 65
Figure 23: Average Compressive Strength VS Age Mixes 23.1 – 26	. 66
Figure 24: Average Compressive Strength VS Age Mixes 1, 14 and 15.1	. 67
Figure 25: Average Compressive Strength VS Age Mixes 16, 29, and 30	. 68
Figure 26: Average Compressive Strength VS Age Mixes 2.1 and 3	. 69
Figure 27: Average Compressive Strength VS Age Mixes 17 and 18	. 70
Figure 28: Average Compressive Strength VS Age Mixes 5, 6, 12, 13	. 71
Figure 29: Average Compressive Strength VS Age Mixes 20.1, 21, 27.1, 28	. 72
Figure 30: Average Length Change VS Age - Mixes 1 and 16	. 74
Figure 31: Average Length Change VS Age - MDOT Class AA Mixes 2.1, 3, 17, and 18	. 75
Figure 32: Average Length Change VS Age - Mixes 4 - 7	. 77
Figure 33: Average Length Change VS Age – Mixes 8 - 11	. 78
Figure 34: Average Length Change VS Age - Mixes 19 - 22	. 79
Figure 35: Average Length Change VS Age - Mixes 23.1 - 26	. 80
Figure 36: Average Length Change VS Age - Blended Aggregate Mixes 12 and 13	. 81
Figure 37: Average Length Change VS Age - Blended Aggregates Mixes 27.1 and 28	. 82
Figure 38: Average Length Change VS Age - MDOT BD Mixes 14, 15.1, 29, and 30	. 83
Figure 39: Average Length Change VS Cementitious Content - Mixes 1 -15	. 84
Figure 40: Average Length Change VS Cementitious Content - Mixes 16 - 30	. 85
Figure 41: 28 Day Chloride Ion Penetrability - All Mixes	. 87
Figure 42: 91 Day Chloride Ion Penetrability - All Mixes	. 88

Figure 43: 365 Day Chloride Ion Penetrability - All Mixes	89
Figure 44: 224 Day Shrinkage For All Mixtures	93
Figure 45: Average Length Change VS Age - Mixes 2.1 and 14	95
Figure 46: Average Length Change VS Age - Mixes 17 and 29	96
Figure 47: Shrinkage VS Age - Mixes 4 and 16	98
Figure 48: Means and DMRT Rankings for Gravel Source and Cement Type - Penetrability	102
Figure 49: Means and DMRT Rankings for SCM Type - Penetrability	103
Figure 50: Means and DMRT Rankings for Gravel Source and SCM Type - Ultimate Shrinka	ige
	105

Chapter 1 - Introduction

Reinforced concrete is commonly used in the design and construction of highway bridges. Durable concrete is critical for bridges to provide long service life and low maintenance costs. It is essential for contractors to use high quality materials in concrete to meet these demands. Each ingredient must meet requirements established in construction material standards provided by the American Association of State Highway and Transportation Officials (AASHTO) or the American Society for Testing and Materials (ASTM) to achieve high quality concrete. These materials must be proportioned to produce strong and durable concrete. Low shrinkage and low permeability are important characteristics that enhance durability of concrete structures. The cementitious paste and each cementitious material must receive careful consideration when considering ways to reduce shrinkage and permeability. The purpose of this study was to generate laboratory data documenting cementitious material's influence on shrinkage and permeability. Cementitious materials used in this study include Type I and Type GU cement, Class C fly ash, Class F fly ash, and ground granulated blast furnace slag (GGBFS).

Concrete is a composite material consisting of aggregates, cementitious materials, water, air, and admixtures. Concrete can be divided into two major components including aggregates and cementitious paste. Fine and coarse aggregates make up the aggregate portion. Fine aggregates generally range in size from the smallest grain up to 3/8 in. Fine aggregates occur naturally or may be manufactured during the production of crushed coarse aggregate. Coarse aggregates contain particles retained on the No. 16 sieve and up to 1 in. size or larger. Coarse aggregates can be gravel or crushed stone. Round gravel with sizes up to 1 in. are abundant in Mississippi and require minimal processing before they are ready for use in concrete. Natural sands are also abundant making gravel aggregate concrete with natural sand common in

Mississippi. Aggregates make up 60% to 75% of the total volume of concrete (1). The remaining 25% to 40% of the volume of concrete is void space developed by the irregular shape of individual particles of aggregates. This void space must be filled with cementitious paste.

Cementitious paste is composed of cementitious materials, water, air, and chemical admixtures. Portland cement is the primary cementing ingredient in the cementitious paste. Portland cement is a hydraulic cement which means it sets and hardens by reacting chemically with water (1). This chemical reaction is called hydration. Portland cement is made of many compounds, and four of these compounds include tricalcium silicate, dicalcium silicate, tricalcium aluminate, and tetracalcium aluminoferrite (1). The calcium silicates react with water to form calcium hydroxide and calcium silicate hydrate. The calcium silicate hydrate is the most important cementing component in concrete because it causes concrete to set and gain strength. Portland cement is often complemented with other cementitious materials that can contribute to the fresh and hardened properties of concrete through hydraulic or pozzolanic activity (1).

A pozzolan is a siliceous or aluminosiliceous material that chemically reacts with calcium hydroxide produced during the hydration of portland cement. This reaction produces additional calcium silicate hydrate and other cementitious compounds (2). Fly ash and GGBFS may have both hydraulic and pozzolanic qualities and are generally categorized as supplementary cementitious materials (SCMs) (1).

Concrete experiences volume changes while in a plastic or hardened state. These volumetric changes are relatively small compared to the entire volume of concrete and primarily occur in the paste portion of the mixture as shrinkage. Volume change can be either in the form of swelling (expansion) or shrinkage (contraction). Volume change in plastic and early age

2

concrete is commonly due to shrinkage. This shrinkage occurs as a result of chemical shrinkage, autogenous shrinkage, settlement, and plastic shrinkage.

Chemical shrinkage is a reduction in absolute volume of solids and liquids in cement paste that result from cementitious materials reacting with water. Portland cement and water occupy more volume in their individual state than when they are chemically combined (1). Consequently, as concrete sets and gains strength during hydration its volume shrinks.

Autogenous shrinkage occurs as water in the pores of the cementitious paste is consumed by hydration. This phenomenon is also known as self-desiccation (2). This shrinkage is much less than the absolute volume changes of chemical shrinkage (1). It is more prominent in concrete with high cementitious contents and low water contents. Autogenous shrinkage is most prominent in concrete having a water to cement ratio less than 0.42 (2). This additional consumption of water by hydration causes less volume and shrinkage in the cementitious paste.

Settlement also contributes to volume shrinkage. Settlement occurs as heavier solids in concrete mixtures settle and water rises. This water either evaporates or is otherwise removed from the concrete mixture causing a reduction in volume of concrete. This reduction of water causes shrinkage in the overall volume of concrete. Settlement shrinkage was not considered in this study because initial shrinkage comparator readings were performed after settlement had occurred.

Plastic shrinkage is a combination of chemical shrinkage, autogenous shrinkage, and rapid evaporation while the concrete is still in a plastic state. Plastic shrinkage is often attributed to surface cracking that can occur during final finishing operations. Plastic shrinkage is addressed in specification with curing methods to reduce rapid evaporation. Plastic shrinkage was not considered in this study because rapid evaporation was prevented by using a moist room and water curing tank.

Hardened concrete also experiences volume changes and may be in the form of expansion and shrinkage with changes in moisture and temperature. When external water is available to replace water that is consumed by chemical shrinkage, expansion occurs. Additionally, expansion will occur when hardened concrete gets wet. While concrete expands and contracts with changes in temperature and moisture, the overall tendency of concrete is to shrink. As hardened concrete dries due to the relative humidity of air being lower than the relative humidity of the concrete, drying shrinkage occurs.

When shrinkage of concrete is restrained, shrinkage cracks can occur. Concrete shrinkage is restrained by supporting subbase/base materials or from reinforcing steel and other structural elements. A combination of shrinkage of concrete materials and restraint is the mechanism that produces cracking. This restraint of shrinkage causes cracks to form as restrained shrinkage stresses exceed the strength of the concrete. Reinforcing steel is designed to resist tensile stresses in the concrete that are induced by imposed loads. It is also designed to hold faces of shrinkage cracks tight together. These shrinkage cracks are expected and included in the design of reinforcing steel. Even though shrinkage cracks are considered in reinforced concrete design, every effort should be made to minimize these cracks. These cracks provide channels for water and chloride ions to get to and corrode the reinforcing steel. They also provide an opening for concrete to be attacked by sulfates and other chemicals that can cause deterioration of the concrete.

While effort should be made to reduce shrinkage characteristics of concrete, the concrete should be proportioned to have low permeability. Permeability of concrete refers to the amount of water that migrates through concrete when the water is under pressure or the ability of concrete to resist penetration of other substances (2). The overall permeability of concrete is a function of the permeability of the cementitious paste (1). Permeability of the cementitious paste is important because cementitious paste provides a medium for penetration of chemicals that can attack and deteriorate concrete. Permeability of the cementitious paste is a function of the paste (1). As porosity of the paste increases, the permeability of the concrete increases.

Low shrinkage and low permeability characteristics are critical for durable bridge decks. Bride decks form an integral structural component critical to the stability of a bridge. Bridge decks that exhibit low cracking and have low permeability potentially will produce bridge decks with the longest service life and lowest maintenance costs. Specifications for concrete materials used in bridge decks must incorporate strategies to provide durability. MDOT has recently developed a new Class BD concrete for concrete bridge decks with a focus on durability.

Class BD concrete addresses both concrete materials and construction procedures critical for durable concrete. Durability is achieved in this class of concrete by reducing shrinkage and reducing permeability. The maximum amount of cementitious materials that can be used in Class BD concrete is 564 pounds per cubic yard. Setting a maximum amount of cementitious materials will control the amount of cementitious materials available to consume water during hydration thereby reducing shrinkage. A nominal slump of 3 in. is specified to limit the amount of free water in the mixture to reduce drying shrinkage. Aggregate gradation optimization is also incorporated in an effort to replace cementitious paste that shrinks with aggregates that are

volumetrically stable relative to cementitious paste. Low permeability is incorporated with a maximum water cementitious ratio ranging from 0.43 to 0.45. MDOT's Class BD concrete at the time of this research allows two cementitious materials including portland cement and GGBFS, but does not allow fly ash to be used.

MDOT Class BD concrete reflects the experience and research of the Kansas Department of Transportation (KDOT). KDOT has implemented a special provision for low cracking, high performance concrete for bridge decks. This special provision was based on studies conducted by the University of Kansas (KU). It incorporated strategies to reduce cementitious paste content which has the highest potential for shrinkage. This reduction in cementitious paste is partly accomplished by increasing aggregate content. Therefore, aggregate gradation optimization is an integral part of the KU model. The KU model uses a minimum cementitious content of 500 pounds per cubic yard and a maximum of 540 pounds per cubic yard to limit the amount of cementitious materials that will shrink during hydration. Low permeability is incorporated by specifying a maximum water cementitious ratio ranging from 0.44 to 0.45. Both portland cement and GGBFS can be used in mixtures designed according to the KU model.

Aggregate gradation optimization is embraced in both the MDOT Class BD concrete and the KU model. Reported benefits associated with aggregate gradation optimization include less cementitious paste, less shrinkage, greater strengths, better pumpability, and enhanced finishability (3). A goal of aggregate gradation optimization is to fill voids in concrete with aggregate particles in lieu of cementitious paste. This provides more cementitious paste for workability if it is not used for filling voids. Aggregate gradation optimization may be found in other documents including the American Concrete Institute's (ACI) 302 guide entitled "Guide for Concrete Floor and Slab Construction" used by designers for slab on ground construction. Common aggregate optimization methods use general guidelines for controlling total percentage of fine and coarse aggregate particles retained on any one sieve. These limits vary based on locally available aggregates and experience of the designer. Table 1 shows the combined percent materials retained on individual sieves used by ACI, KDOT, and MDOT for maximum size material up to 1 in. There are also other design aids available for optimization including a "Coarseness Factor Chart" to evaluate the workability of a mixture based on the combined aggregate gradation. Figure 1 presents an example of a Coarseness Factor Chart presented in ACI 302 modified to include MDOT's limits indicated by an ellipse.

	Combined Percent Retained on Individual Sieves												
	1-1/2 in.	1 in.	3⁄4 in.	¹⁄₂ in.	3/8 in.	No. 4	No. 8	No. 16	No. 30	No. 50	No. 100	No. 200	Pan
ACI	NA	0-4	8-22	8-22	8-22	8-22	8-22	8-22	8-15	8-15	1.5-5	NA	NA
KDOT	0	2-6	5-18	8-18	8-18	8-18	8-18	8-18	8-15	5-15	0-5	NA	0-2.5
MDOT	0	1-6	5-22	8-22	8-22	8-22	8-22	8-18	8-15	5-18	0-6	0-5	0-2

Table 1: Combined Percent Retained on Individual Sieves - ACI, KDOT, MDOT

Figure 1: Coarseness Factor Chart

Concrete used in bridge deck construction must be durable. Durability of concrete can be measured by the amount of shrinkage and permeability associated with specific concrete mixtures. Designers can implement strategies to reduce shrinkage cracking and reduce permeability. Model specifications for low cracking, durable concrete available for MDOT engineers are based on studies formulated without the use of Mississippi materials. The model used by MDOT for the Class BD concrete was based on studies performed by the University of Kansas and it places a great deal of emphasis on aggregate gradation optimization that may or may not be applicable for Mississippi aggregates. State Study 216 "Shrinkage and Durability Study of Bridge Deck Concrete" documents shrinkage and permeability characteristics of concrete made with various combinations of cementitious materials and Mississippi aggregates.

Objective

The objective of this research was to determine the usefulness of supplemental cementitious materials in decreasing shrinkage and permeability of concrete. Concrete with low shrinkage potential and low permeability is critical to provide long-term durability for bridge decks.

Approach

The approach used to determine the influence of SCMs on shrinkage and permeability was to measure these characteristics on mixtures that contain SCMs and mixtures that did not contain SCMs and compare the results. Additional mixtures representing model specification for low cracking, high performance concrete bridge decks and current MDOT specifications were also included in the study to evaluate shrinkage and permeability characteristics associated with these common practices. Test methods used to measure shrinkage and permeability include AASHTO T 160 / ASTM C 157 "Standard Test Method for Length Change of Hardened Hydraulic-Cement Mortar and Concrete" and AASHTO T 277 / ASTM C 1202 "Standard Test Method for Electrical Indication of Concrete's Ability to Resist Chloride Ion Penetration." These tests were conducted on each of the thirty mixtures.

Shrinkage of each mixture was determined according to AASHTO T 160 / ASTM C 157. This test method uses a comparator accurate to the nearest 0.0001 in. to measure the length change of 4 in. by 4 in. by 11 ¼ in. long concrete prisms compared to a standard reference steel bar. Length change measurements extended over a 476 day period including both expansion and shrinkage calculations for each specimen. Expansion occurred while specimens remained in a water bath for the first 28 days. The specimens were placed in a temperature and humidity controlled room after the first 28 days where shrinkage began. Specimens remained in this room until testing was completed. Length change resulting from chemical shrinkage, autogenous shrinkage, and/or drying shrinkage was calculated for each mixture. Chapter 4 "Laboratory Testing" provides a detailed description of test procedures and length change calculations.

AASHTO T 277 / ASTM C 1202 was used to indicate the permeability of each concrete mixture. These tests were conducted over a six hour period with a constant 60 ± 0.1 volt DC current placed across the specimens. Automatic data processing equipment was used to determine the area under a current (in amperes) verses time (in seconds) graph representing the total charge passed during the test period. This total charge is a measure of the electrical conductance of the concrete during the test period and is expressed in coulombs. Coulombs are correlated to the resistance of the specimen to chloride ion penetration, also known as penetrability. Chapter 4 "Laboratory Testing" provides a detailed description of test procedures for permeability.

A total of thirty mixtures were tested to provide data for this study. These thirty mixtures can be divided into five mixture categories including KU, MDOT Class AA, research, blended aggregates, and MDOT Class BD. Table 2 provides a general description of each mixture category. Two of these categories were selected to serve as benchmarks (i.e., controls) to compare the performance of the other mixtures to typical performance. These control mixture categories are KU and MDOT Class AA. Each mixture in each category was repeated with a second aggregate source. Repeating these mixtures with a second aggregate source provided additional shrinkage and permeability data and provided data to evaluate the influence of aggregate properties on shrinkage and permeability.

Table 2: Experimental Mixtures

					Supp	lemental Cem	entitious Mat	erials
Mixture Category	Mix Numbers	Aggregate Type	Aggregate Source	Cement Type	No SCM	25% Class C Fly Ash	25% Class F Fly Ash	50% GGBFS
VII	1	Limestone	1	Ι	X			
KU	16	Limestone	2	Ι	Х			
MDOT Class AA	2.1,3	Gravel	1	Ι	Х	Х		
MDOT Class AA	17,18	Gravel	2	Ι	Х	Х		
	4,5,6,7	Gravel	1	Ι	Х	Х	Х	Х
Decemb	8,9,10,11	Gravel	1	GU	Х	Х	Х	Х
Kesearen	19,20.1,21,22	Gravel	2	Ι	Х	Х	Х	Х
	23.1,24,25,26	Gravel	2	GU	Х	Х	Х	Х
Blended	12,13	Gravel	1	Ι		Х	Х	
Aggregates	27.1,28	Gravel	2	Ι		Х	Х	
	14,15.1	Gravel	1	Ι	Х			Х
MDOT Class BD	29,30	Gravel & Limestone	2	Ι	Х			Х

The KU category incorporated strategies to reduce shrinkage and permeability that are similar to those in KDOT's special provision. This model used recommendations from research performed at the University of Kansas. Mixtures associated with this model are referred to herein as KU mixes. Mixtures proportioned for this category have 100% Type I portland cement and aggregate gradation optimization. This optimization includes concepts of coarseness factor (CF), workability factor (WF), and adjusted workability factor (AWF) to utilize a well-

graded aggregate blend which imparts workability to the mixture while maintaining a low paste content and low cracking potential. The adjusted workability factor accounts for any excess or deficiency of fines contributed by the cementitious materials in the mixture. MDOT's "Concrete Field Manual contains Equation 1 for CF, Equation 2 for WF, and Equation 3 for AWF (9). The KU model also places limits of combined percent retained on individual sieve sizes and these limits are given in Table 1. Computer software developed at the University of Kansas was used in proportioning the KU mixes.

$$CF = \frac{Cumulative \% retained on 3/8 in. sieve}{Cumulative \% retained on No.8 sieve} *100$$
(1)

$$WF = \frac{Cumulative \% \ pas \sin g \ No.8 \ sieve}{Cumulative \% \ retained \ on \ all \ sieves} *100$$
(2)

$$AWF = WF + \frac{2.5}{sack} * \left[\frac{Total \ weight \ of \ cementitious \ materials}{94 \frac{lb}{sack}} - 6 \ sack \right] (3)$$

For development of mixtures in the MDOT Class AA category, MDOT engineers reviewed records of mixtures submitted to the Department for use on bridge decks. These previously submitted mixtures were summarized and evaluated for common industry practices for mixtures proportioned for bridge decks in Mississippi. Mixtures developed from these submitted mixtures are referred herein to as MDOT Class AA. The MDOT Class AA category incorporated mixtures with 100% Type I portland cement and mixtures using 75% Type I portland cement with 25% Class C fly ash. Aggregate grading optimization was not utilized in mixtures developed for the MDOT Class AA category.

To determine the impact of cementitious materials on shrinkage and permeability, a category of research mixtures was developed. This category contains four variations in cementitious materials including 100% Type I portland cement, 75% Type I portland cement with 25% Class C fly ash, 75% Type I portland cement with 25% Class F fly ash, and 50% Type I portland cement with 50% GGBFS. These four variations of cementitious materials were repeated using Type GU cement to replace the Type I portland cement. These eight mixtures were then repeated using a second gravel aggregate source. A total of sixteen mixtures are included in the research category. Aggregate gradation optimization was not used in developing any mixtures in the research category. A No. 57 gravel was used for the coarse aggregate and concrete sand was used for the fine aggregate and the gradation of each reflected the gradation as sampled from the supplier.

The blended aggregates category was developed to determine if increased workability can be achieved by blending aggregates that are typically stockpiled at concrete plants in Mississippi. These aggregates included No. 57 gravel, No. 8 gravel, and concrete sand. Cementitious materials used included 75% Type I portland cement with 25% Class C fly ash and 75% Type I portland cement with 25% Class F fly ash. These blended aggregate mixtures were similar to mixtures in the research mixture category that had 75% Type I portland cement with 25% Class C fly ash and 75% Type I portland cement with 25% Class F fly ash. Water and cementitious content were adjusted for blended mixtures based on slump test results from nonblended mixtures to take advantage of increased workability associated with blended aggregates. A 0.48 water cementitious ratio was held in the blended aggregates mixtures and the research mixtures. The KU software was used to assist with aggregate gradation optimization. In addition, these blended aggregates mixtures were proportioned to meet limits established by MDOT for CF and AWF. See equations 4 through 7 for MDOT limits for CF and AWF.

$$AWF_{upper \ limit} = 36 + \sqrt{16 - \left(\frac{4}{13}\right)^2} X (CF - 61)^2$$
(4)

$$AWF_{lower \ limit} = 36 - \sqrt{16 - \left(\frac{4}{13}\right)^2} X (CF - 61)^2$$
(5)

$$CF_{upper \ limit} = 61 + \sqrt{169 - \left(\frac{13}{4}\right)^2} X (AWF - 36)^2$$
 (6)

$$CF_{lower \ limit} = 61 - \sqrt{169 - \left(\frac{13}{4}\right)^2} X (AWF - 36)^2$$
 (7)

The MDOT Class BD category was developed to determine shrinkage and permeability performance of MDOT's Class BD concrete. Cementitious materials used included 100% Type I portland cement and 50% Type I portland cement with 50% GGBFS. All of the MDOT Class BD category mixtures used aggregate gradation optimization. This optimization produced combined aggregate gradations within the limits established by MDOT for CF and AWF. These mixtures did not meet MDOT's limits for combined percent retained on individual sieve sizes listed in Table 1. The gravel aggregate sources selected for this study could not be combined to meet the lower limits required by the MDOT Class BD specifications for the No. 8 and No. 16 sieves.

Chapter 2 - Materials

Hydraulic Cement

Both an ordinary portland cement (OPC) and blended cement were used in this study. These are hydraulic cements and provide the primary cementing material in the mixtures. Type I portland cement meeting requirements of ASTM C 150 / AASHTO M 85 and a Type GU cement meeting requirements of ASTM C 1157 were used. Hydraulic cements react with water and produce calcium silicate hydrate and other cementing compounds that cause concrete to set and gain strength. A byproduct of this reaction is calcium hydroxide which remains suspended in the concrete matrix and may be available to react with pozzolans such as Class C or Class F fly ash to create more cementing compounds.

Type I

Type I portland cement meeting requirements of ASTM C 150 / AASHTO M 85 is hydraulic cement made to conform to specific chemical and physical property limits according to these specifications. These specifications provide for ten types of portland cement. Type I LA (low alkali) was used in this study and is referred to herein as Type I. Only one source of Type I cement was used in this study. Chemical and physical properties of the Type I portland cement used in this study were provided by the supplier and are presented in Table 3.

Type GU

Type GU cement meeting requirements of ASTM C 1157 was also used in this study. It is also hydraulic cement and usually performs similarly to Type I portland cement. This cement may contain other blended or interground materials including pozzolans, slag, limestone, or other

related materials. It is produced to conform to performance limits essentially without specific chemical requirements. There are six types of cements established in ASTM C 1157 and the type used is selected according to application. Type GU used in this study is ordinary portland cement except that the interground limestone content was approximately 10%. This amount of interground limestone exceeds the limestone content allowed by ASTM C 150 / AASHTO M 85 which is a maximum of 5%. While MDOT does not currently recognize ASTM 1157, it is important to note that there is now a proposed change to ASTM C 595 / AASHTO M 240 for a category of "blended" cement that would contain higher amounts (up to 15%) of interground limestone such that this Type GU cement would meet that proposed new specification. Only one source of Type GU cement was used in this study and this source is a different source than the source of the Type I portland cement. Physical properties of the Type GU cement used in this study were provided by the supplier and are presented in Table 4.

Supplementary Cementitious Materials (SCMs)

Supplementary Cementitious Materials (SCMs) are included in concrete mixtures as part of the overall cementitious system. Most concrete produced in Mississippi incorporates SCMs in the mixture, particularly Class C and Class F fly ash. SCMs are often added to concrete in order to improve some plastic or hardened property of the concrete. SCMs included in this research are Class C fly ash, Class F fly ash, and GGBFS, commonly referred to as slag cement. SCMs have both hydraulic and pozzolanic value in concrete. Pozzolans are materials that have little cementing value by themselves, but will react with calcium hydroxide to provide more cementing compounds.

Fly Ash

Fly ash is finely divided residue of burned ground coal, captured from the flue gases of a coal combustion device, usually at a coal-burning electric power plant. The combustion byproduct is usually harvested with electrostatic precipitators, conveyed to storage and shipping, and is commonly used as a cementitious component of concrete without further processing. However, some fly ash is enhanced by separation of particle sizes and chemical treatment of carbon residue in the ash. Class C and Class F fly ash conform to the provisions of AASHTO M 295 / ASTM C 618 "Standard Specification for Coal Fly Ash and Calcined Natural Pozzolan for Use in Concrete." The distinction between the two classes is usually related to the type of coal burned in production of the ash. Class C fly ash can contain a total calcium content (expressed as CaO) higher than 10%, but MDOT projects require a CaO content of Class C fly ash greater than or equal to 6%. MDOT projects require a CaO content of less than 6% for Class F fly ash. Both classes of fly ash are predominately pozzolanic. Functionally, a Class F fly ash is typically more nearly pure pozzolan than a Class C fly ash. A Class C fly ash may have slight hydraulic cementitious reactivity and other reactive chemical components. It is possible for a fly ash source to conform to both Class C and Class F fly ash designations; however, MDOT requires that fly ash be classified as either Class C or Class F but not both. MDOT concrete specifications allow Class C and Class F fly ash to be used to replace up to 25% of the portland cement for all classes of concrete except for Class BD. At the time of this research, MDOT Class BD concrete specifications did not allow either Class C or Class F fly ash. Chemical and physical properties of the Class C and Class F fly ash in this study were provided by the supplier and are presented in Table 5 and 6, respectively.

Ground Granulated Blast Furnace Slag (GGBFS)

Ground Granulated Blast Furnace Slag (GGBFS) is produced from water-quenched molten slag from an iron-making blast furnace according to AASHTO M 302 / ASTM C 989 "Slag Cement for Use in Concrete and Mortars." It is hydraulic cement with additional pozzolanic properties. GGBFS is the molten mineralogical byproduct of iron ore from the blast furnace, but must be processed through "granulation" (rapid water quenching), drying, and grinding in a ball mill or roller press to produce GGBFS cement. MDOT concrete specifications allow up to 50% replacement of portland cement with GGBFS cement for all classes of concrete. Chemical and physical properties of the GGBFS used in this study were provided by the supplier and are presented in Table 7.

Chemical Properties	Results
Silicon Dioxide (SiO ₂), %	19.6
Aluminum Oxide (Al ₂ O ₃), %	5.6
Ferric Oxide (Fe ₂ O ₃), %	3.6
Calcium Oxide (CaO), %	64.2
Magnesium Oxide (MgO), %	0.9
Sulfur Trioxide (SO ₃), %	3.6
Loss of Ignition (LOI), %	2.3
Insoluble Residue, %	0.24
Free Lime, %	1.10
Alkalies (Na ₂ O equivalent), %	0.54
Carbon Dioxide (CO2), %	0.9
Limestone, %	2.1
CaCO3 in limestone, %	93
Tricalcium Silicate (C ₃ S), %	55
Dicalcium Silicate (C ₂ S), %	15
Tricalcium Aluminate (C ₃ A), %	9
Tetracalcium Aluminoferrite (C ₄ AF), %	11
Physical Properties	Results
Blaine Fineness, m ² /kg	378
325 Mesh (% passing)	92.9
Time of setting (Vicat) Initial Set, minutes	90
Time of setting (Vicat) Final Set, minutes	190
Time of Setting (Gillmore) Initial Set, minutes	140
Time of Setting (Gillmore) Final Set, minutes	240
Air Content, %	6.6
False Set, %	83
Normal Consistency, %	25.1
Autoclave Expansion, %	0.04
Expansion in Water, %	0.007
Compressive Strength, 1 day (psi)	2550
Compressive Strength, 3 day (psi)	4100
Compressive Strength, 7 day (psi)	4950

 Table 3: Type I Portland Cement - Chemical and Physical Properties

Table 4: Type GU Cement - Physical Properties

Physical Properties	Results
Air Content, %	6
Blaine Fineness (m ² /kg)	525
Autoclave Expansion, %	0.03
Compressive Strength, 3 day (psi)	4980
Compressive Strength, 7 day (psi)	5810
Compressive Strength, 28 day (psi)	7180
Initial Vicat (minutes)	105
Mortar Bar Expansion, %	0.015

Table 5: Class C Fly Ash - Chemical and Physical Properties

Chemical Properties	Results
Silicon Dioxide (SiO ₂), %	36.05
Aluminum Oxide (Al ₂ O ₃), %	19.43
Iron Oxide (Fe ₂ O ₃), %	6.91
Sum of Constituents, %	62.39
Sulfur Trioxide (SO ₃), %	1.89
Calcium Oxide (CaO), %	24.34
Moisture Content, %	0.08
Loss on Ignition, %	0.36
Available Alkalies, as Na ₂ O, %	1.47
Physical Properties	Results
Fineness, % retained on No. 325	19.60
Strength Activity Index 7 day, % of control	86
Strength Activity Index 28 day, % of control	79
Water Requirement, % control	95
Autoclave Soundness, %	0.06
True Particle Density	2.64

Chemical Properties	Results
Total Silica, Aluminum, Iron, %	89.7
Silicon Dioxide (SiO ₂), %	56.3
Aluminum Oxide (Al ₂ O ₃), %	27.7
Iron Oxide (Fe ₂ O ₃), %	5.7
Sulfur Trioxide (SO ₃), %	0.0
Calcium Oxide (CaO), %	1.0
Moisture Content, %	0.2
Loss on Ignition, %	3.2
Available Alkalies, as Na ₂ O, %	0.6
Sodium Oxide, %	0.10
Potassium Oxide, %	0.70
Physical Properties	Results
Fineness, % retained on No. 325	20.0
Strength Activity Index 7 day, % of control	76.3
Strength Activity Index 28 day, % of control	77.6
Water Requirement, % control	95.0
Autoclave Soundness	-0.04
Drying Shrinkage, Increase at 28 day, %	0.00
Density Mg/m ³	2.24

Table 6: Class F Fly Ash - Chemical and Physical Properties

Table 7: GGBFS - Chemical and Physical Properties

Chemical Properties	Results
Sulfide S, %	0.8
Sulfate Ion (SO ₃), %	1.79
Physical Properties	Results
+45 μm (No. 325) Sieve, %	0.54
Blaine Fineness (m ² /kg)	591
Air Content, %	4.45
Slag Activity 7 Day Index, %	90
Slag Activity 28 Day Index, %	130
Compressive Strength Slag-Ref, 7 day (psi)	3920
Compressive Strength Slag-Ref, 28 day (psi)	6820

Aggregates

Two sources for aggregate were selected and used in this research for all categories of mixtures. Two sources of crushed limestone were used in developing mixtures for the KU category and two sources of gravel were used to develop mixtures in all other categories. Two aggregate sources were included in order to determine if a change in aggregate mineralogy would produce significantly different length change and permeability results. Aggregate sources used in the study were from MDOT approved sources. Coarse and fine aggregates from source number one were used in mixes 1 through 15.1. Coarse and fine aggregates from source number two were used in mixes 16 through 30. See Table 2 for a general description of mixtures and aggregate sources used in this study.

Crushed Limestone

Four sizes of coarse crushed limestone aggregate were used in mixes 1 and 16 to meet strict combined individual percent retained limits of the KU mix design method. Crushed limestone coarse aggregate sizes in these mixtures include No. 4, No. 57, No. 89, and No. 11. Two sources of crushed limestone were used for all sizes except for the No. 4. No. 11 crushed limestone was also used in mixes 29 and 30 in an effort to meet combined individual percent retained limits of MDOT's Class BD concrete. Crushed limestone aggregate properties are presented in Tables 8 and 9.

Gravel

Gravel aggregates were used in mixes 2.1 through 15.1 and 17 through 30 except for the addition on No. 11 crushed limestone that was used in mixes 29 and 30. No. 57 gravel and concrete sand was used in mixes 2.1 through 11 and 17 through 26. Three aggregates including

No. 57, No. 8 and concrete sand were used in mixes 12 through 15.1 and 27.1 through 28. No. 57, No. 11, and concrete sand are used in mixes 29 and 30. Properties for gravel aggregates used in this study are presented in Tables 10 and 11.

	No.4		No. 57		No. 89		No. 11	
Sieve Size	Individual % Retained	Total % Passing						
1"	63.4	37	1.1	99	0.0	100	0.0	100
3⁄4"	29.6	7	16.4	82	0.0	100	0.0	100
1/2"	5.7	1	43.5	39	0.1	100	0.0	100
3/8"	0.1	1	19.1	20	10.9	89	0.0	100
No. 4	0.1	1	14.0	6	62.9	26	7.8	92
No. 8	0.0	1	3.4	2	13.0	13	26.7	65
No. 16	0.0	1	0.7	2	5.7	7	20.5	45
No. 30	0.0	1	0.4	1	2.3	5	13.7	31
No. 50	0.0	1	0.3	1	1.1	4	8.4	23
No. 100	0.0	1	0.3	1	0.8	3	5.6	17
No. 200	0.6	0.4	0.3	0.4	1.8	1.5	3.2	14.1
FM	7.86		6.84		5.52		3.26	
Bulk Gravity (SSD)	2.651		2.690		2.673		2.604	
Absorption (%)	1.33		0.97		1.37		2.43	

Table 8: Crushed Limestone - Source Number 1

	No.4		No. 57		No. 89		No. 11	
Sieve Size	Individual % Retained	Total % Passing						
1"	63.4	37	0.9	99	0.0	100	0.0	100
3⁄4"	29.6	7	18.4	81	0.0	100	0.0	100
1/2"	5.7	1	38.2	43	0.0	100	0.0	100
3/8"	0.1	1	22.3	20	0.8	99	0.0	100
No. 4	0.1	1	18.5	2	59.5	40	0.2	100
No. 8	0.0	1	0.8	1	29.7	10	14.2	86
No. 16	0.0	1	0.0	1	5.9	4	30.5	55
No. 30	0.0	1	0.0	1	1.7	3	22.5	33
No. 50	0.0	1	0.1	1	0.5	2	14.8	18
No. 100	0.0	1	0.1	1	0.3	2	9.7	8
No. 200	0.6	0.4	0.1	0.6	0.2	1.6	3.5	4.7
FM	7.86		6.93		5.41		3.00	
Bulk Gravity (SSD)	2.651		2.739		2.746		2.727	
Absorption (%)	1.33		0.63		0.39		0.62	

Table 9: Crushed Limestone - Source Number 2

	No.57		No.	8	Sand	
Sieve Size	Individual % Retained	Total % Passing	Individual % Retained	Total % Passing	Individual % Retained	Total % Passing
1"	13.5	86	0.0	100	0.0	100
3⁄4"	21.1	65	0.0	100	0.0	100
1/2"	32.6	33	0.0	100	0.0	100
3/8"	14.7	18	10.7	89	0.0	100
No. 4	16.4	2	81.4	8	2.1	98
No. 8	1.2	0	7.3	1	15.0	83
No. 16	0.1	0	0.4	0	13.3	70
No. 30	0.1	0	0.1	0	23.9	46
No. 50	0.0	0	0.0	0	38.1	7
No. 100	0.0	0	0.0	0	7.1	0
No. 200	0.0	0.1	0.0	0	0.1	0.3
FM	7.14		6.02		2.96	
Bulk Gravity (SSD)	2.529		2.522		2.632	
Absorption %	2.29		2.88		0.31	

Table 10: Gravel Aggregate - Source Number 1

	No.57		No.	8	Sand		
Sieve Size	Individual % Retained	Total % Passing	Individual % Retained	Total % Passing	Individual % Retained	Total % Passing	
1"	3.5	96	0.0	100	0.0	100	
3⁄4"	8.6	88	0.0	100	0.0	100	
1/2"	27.7	60	0.0	100	0.0	100	
3/8"	25.3	35	2.5	98	0.0	100	
No. 4	32.6	2	94.6	3	5.7	94	
No. 8	1.2	1	2.6	0	8.7	86	
No. 16	0.3	1	0.1	0	8.4	77	
No. 30	0.2	1	0.0	0	16.6	61	
No. 50	0.1	0	0.0	0	48.1	12	
No. 100	0.1	0	0.0	0	10.7	2	
No. 200	0.0	0	0.0	0	1.0	0.8	
FM	6.72		5.99		2.68		
Bulk Gravity (SSD)	2.523		2.523		2.644		
Absorption %	2.22		2.57		0.38		

Table 11: Gravel Aggregate - Source Number 2

Admixtures

Water Reducer

All mixtures in this study included a single Type A water reducing admixture meeting requirements of AASHTO M 194 / ASTM C 494 "Standard Specifications for Chemical Admixtures for Concrete." Water reducers can be used to provide a higher slump without increasing the water cementitious ratio or lower water cement ratio without reducing slump. In addition, higher strengths can be achieved due to increased dispersion of the cementitious particles leading to increased hydration. Dosage rates in this study are given in ounces per 100 pounds of cementitious materials in the mixture. The dosage rate for the KU mixes was 5
ounces. Dosage rate ranged from 2 to 4.5 ounces for MDOT Class AA mixes 2.1, 3, 17, and 18. A common dosage rate of 4 ounces was used for all other mixtures. Actual dosage rates for each mix are provided in Appendix A. MDOT requires either a type A, D, F, G, or mid-range chemical admixture to be used in all classes of concrete except for drill shaft concrete. Water reducing admixtures can influence length change of concrete (1).

Air Entraining

Entrained air is chemically induced in concrete to reduce surface delamination caused by freeze thaw cycles on moist concrete. Moisture expands when it freezes and this expansion can cause cracking and scaling of the concrete surface. Entrained air provides microscopic air voids in the cementitious paste that provide relief from stresses caused by expansion of water. A common air entraining admixture was used in all mixtures except for the KU mixes. This admixture meets requirements of ASTM C 260 / AASHTO M 154 "Standard Specifications for Air-Entraining Admixture." The air entraining admixture used in KU mixes had to be vinsol resin or tall oil based to comply with KDOT's specifications. A separate air entraining admixture was used for the KU mixtures to meet this requirement. The dosage rate was selected to provide the proper amount of air required for each mixture. The dosage rate is given in ounces per 100 pounds of cementitious materials in the mixture. Dosage rates ranged from 0.4 ounces to 1.5 ounces. Actual dosage rates for each mixture are provided in Appendix A.

Chapter 3 - Mixes

The influence of Mississippi gravel aggregates and SCMs on shrinkage and durability is described herein based on laboratory test results and experience gained during production of thirty concrete mixtures. The thirty mixes were derived from fifteen unique mixtures repeated using a different aggregate source. Mixture design parameters used in developing mixtures for this study are presented in Table 13. Mixtures were divided into five categories covering (1) KU mixes - mixes incorporating key elements of the KDOT's model, (2) MDOT Class AA - mixes representing typical MDOT bridge deck concrete, (3) Research mixes - mixes with various combinations of SCMs and cement type, (4) Blended Aggregates - mixes optimized by aggregate blending, and (5) MDOT Class BD mixes.

KU Mix

Key elements of the University of Kansas Mix Method (KU Mix) were employed for mixes 1 and 16. It is important to note that this study did not incorporate every detail associated with KU's requirements for concrete and aggregates. For example, KU requires that coarse aggregates have a maximum absorption of 0.7%. Neither source of limestone used in the study meets this requirement for absorption. In addition, testing protocols used in this study were not the same protocols as those used by KU; therefore, this study may generate results that differ from those generated by the University of Kansas.

KU's computer software was used to develop these mixtures. This is a Microsoft Excel Workbook, utilizing visual basic for applications, that performs the aggregate gradation optimization process. Available from <u>www.iri.ku.edu</u>, this application determines an optimized aggregate gradation based on combined coarse and fine aggregate individual percent retained and

a coarseness factor chart. Figure 4 shows the combined individual percent retained for aggregates used in KU mixes. A KU mix consists of user-selected aggregates combined in proportions suggested by the KU application to produce an *"ideal gradation."* This study employed No.4, No. 57, No. 89, and No. 11 maximum nominal size crushed limestone and combined these with a local sand source in the increments suggested by the KU application. Source number one sand and limestone was used in mix 1. Source number two sand and limestone was used in mix 1. Source number two sand and limestone was used in the KU mixes with a 0.45 water-cement ratio (w/c).

Figure 2: Sampling Gravel Aggregate Source No. 1

Figure 3: KU Mix Laboratory Samples

MDOT Class AA

Typical MDOT Class AA concrete mixes are represented by four mixtures including mixes 2.1, 3, 17, and 18. See Table 12 for key properties for MDOT Class AA mixes. No. 57 gravel aggregate representing 70% of the bulk volume per unit volume of concrete was used in each mixture. 100% Type I portland cement was used in mixes 2.1 and 17 while mixes 3 and 18 utilized 75% Type I portland cement with 25% Class C fly ash. Each MDOT Class AA mixture contained 588 pounds of cementitious material proportioned with a water-cementitious ratio (w/cm) of 0.40. Source number one sand and gravel was used in mixes 2.1 and 3. Source number two sand and gravel was used in mixes 17 and 18. No. 57 gravel and concrete sand was combined and aggregate gradation optimization was not incorporated into these mixtures. Figures 5 and 6 illustrate the combined fine and coarse aggregate individual percent retained used in the MDOT Class AA mixes.

Research Mixes

Combinations of SCMs along with Type I and Type GU cements were used in sixteen of the mixtures, including mixes 4 through 11 and 19 through 26. These mixtures had similar design parameters and were the primary focus for this study. Each of the two aggregate sources were proportioned with Type I portland cement, 25% C fly ash, 25% F fly ash, and 50% GGBFS. These mixtures were then repeated with Type GU cement replacing the Type I portland cement. A w/cm ratio of 0.48 was held for all research mixtures and cementitious content and water content was adjusted to produce the same cement paste volume of 24.47% for each mixture. Total cementitious material content ranged from 495 to 517 pounds per cubic yard. No. 57 gravel and concrete sand was combined and no aggregate optimization was incorporated. Figure 7 illustrates the combined individual percent retained for aggregates used in research mixes.

Blended Aggregates

Mixes 12, 13, 27.1, and 28 used a blend of No. 57 and No. 8 gravel aggregates for the coarse aggregate portion. Blended aggregate mixtures were optimized by the KU mix design software and were within limits of MDOT's CF and AWF. These mixtures used either 75% Type I portland cement with 25% Class C fly ash or 75% portland cement with 25% Class F fly ash. Mixes 12, 13, 27.1, and 28 are similar to their companion mixes, 5, 6, 20.1, and 21, respectively. The difference being that water was reduced in the blended aggregate mixtures due to a slight increase in slump that resulted from the blended aggregate gradation. In order to maintain a slump comparable to their companion mixes and a 0.48 w/cm ratio, cementitious content was reduced. Cementitious content ranged from 470 to 490 pounds per cubic yard which

is lower than all other mixtures. Source number one aggregates were used for mixes 12 and 13 and source number two aggregates were used for mixes 27.1 and 28. Figures 8 and 9 illustrate combined individual percent retained for aggregates used in the blended aggregate mixtures.

MDOT Class BD

The final part of the research was used to generate shrinkage and permeability data on MDOT's Class BD concrete. Mixes 14, 15.1, 29, and 30 were proportioned according to MDOT Class BD concrete and key properties can be found in Table 12. 100% Type I portland cement was used for mixes 14 and 29. 50% Type I portland cement with 50% GGBFS was used in mixes 15.1 and 30. Cementitious content in pounds per cubic yard varied from 525 in mix 14, 509 in mix 15.1, to 564 in mixes 29 and 30. These cementitious contents represent the highest and most likely the lowest cementitious contents that will be used in typical field applications. No. 57 and No. 8 gravel and concrete sand from gravel source number one was used in mixes 14 and 15.1. No. 57 gravel and concrete sand from gravel aggregate source two and No. 11 crushed limestone from crushed limestone source two was used in mixes 29 and 30. All of MDOT's Class BD concrete criteria were met in these mixtures except for the combined percent retained on individual sieves No. 8 and No. 16. Figures 10 and 11 illustrate the combined individual percent retained for aggregates used in MDOT Class BD mixtures. When compared to MDOT's requirements, the graphs indicate a deficiency in material retained on the No. 8 and No. 16 sieve. MDOT Class BD's limits for combined individual percent retained could not be met with the gravel aggregate sources used in this study. A 0.45 w/cm ratio was held for these mixtures.

	К	U	MDO	T BD	MDOT	Class AA	
Properties	Min	Max	Min	Max	Min	Max	
Lbs of Cement or Cementitious per Cubic Yard	500	540		564	I	NA	
w/c or w/cm	0.44	0.45	0.43	0.45	0.45	0.45	
Designated Air Content Percent by Volume	7.0	9.0	6.0	8.0	3.0	6.0	
Specified 28 Day Compressive Strength (psi)	3,500 5,500		0 4,000		4,000		
Max. CA Size No.	N	A	57		67 or 57		
Set Retarding Admixes	Not Pe	rmitted	As Required		As R	equired	
Accelerating Admixes	Not Permitted		As Required		As R	equired	
Air-Entraining Admixes	Only vinsol oil b	Only vinsol resin or tall oil based		quired	As R	equired	
Water-reducing Admixes	Type A or Type	dual Rated A-F	Typ	be A	As R	equired	
Designated Slump (in.)	1.5	3.0	As Required	4.0	As Required	Up to 8 with approved water reducer	

Table 12: Key Mix Properties - KU, MDOT Class BD, and MDOT Class AA

Table 13: Mixture Parameters

															Slump
						Cemen	titious				Aggregates		Admix	tures	(in.)
M Num	ix Ibers	Description	w/cm	Total (lbs)	Type I (%)	Type GU (%)	Class C Fly Ash (%)	Class F Fly Ash (%)	GGBFS (%)	57 Coarse Aggregate (Bulk Volume Per Unit Vol. of Concrete)	Second Coarse Aggregate (Percent Agg. Volume)	Fine Aggregate (Percent Agg. Volume)	Type A - Water Reducer (oz. per 100 lbs of cementitious)	Entrained Air	
1	16	Type L-KII Mix	0.45	540	100	0	0	0	0	Δ	s Rea'd By KI	I	5	7 to 9 %	1.5 to 3
-	10		0.45	540	100	0	0	0	0				5	7 10 9 70	2.25 to
2.1	17	MDOT Class AA	0.40	588	100	0	0	0	0	70	0	As Rea'd	4 - 45	55to65%	3 75
3	18	Type I – 25% C Ash – MDOT Class AA	0.40	588	75	0	25	0	0	70	0	As Req'd	2-3.6	5.5 to 6.5 %	2.25 to 3.75
4	19	Type I	0.48	%	100	0	0	0	0	70	0	As Reg'd	4	5.5 to 6.5 %	
5	20. 1	Type I – 25% C Ash	0.48	ately 25 5 to 517	75	0	25	0	0	70	0	As Req'd	4	5.5 to 6.5 %	
6	21	Type I – 25% F Ash	0.48	proxime om 495	75	0	0	25	0	70	0	As Req'd	4	5.5 to 6.5 %	
7	22	Type I – 50% GGBFS	0.48	me Apj unge Fr	50	0	0	0	50	70	0	As Req'd	4	5.5 to 6.5 %	ported
8	23. 1	Type GU	0.48	Be Sa ous Ra	0	100	0	0	0	70	0	As Req'd	4	5.5 to 6.5 %	As Rej
9	24	Type GU – 25% C Ash	0.48	me To nentiti	0	75	25	0	0	70	0	As Req'd	4	5.5 to 6.5 %	
10	25	Type GU – 25% F Ash	0.48	e Volu tal Cer	0	75	0	25	0	70	0	As Req'd	4	5.5 to 6.5 %	
11	26	Type GU – 50% GGBFS	0.48	Past Tc	0	50	0	0	50	70	0	As Req'd	4	5.5 to 6.5 %	
12	27. 1	Type I – 25% C Ash - Blended Agg.	0.48	Optimized 483 to 490	75	0	25	0	0	Optimized B	By KU software	and within	4	5.5 to 6.5 %	6.25 – 7.25
12	20	Type I – 25% F Ash -	0.49	Optimized 470 to 490	75	0	0	25	0	reduction for aggregate optimization.			5 5 to (5 0/	5 (
13	28	Blended Agg.	0.48		15	0	0	25	0				4	5.5 to 6.5 %	5-6
14	29	MDOT BD	0.45	Max. 564	100	0	0	0	0	Ontimized By KU software and within 4		6.5 – 7.5%	2.25 to 3.75		
15. 1	30	Type I – 50% GGBFS MDOT BD	0.45	Max. 564	50	0	0	0	50	limits of	MDOT CF an	d AWF	4	6.5 - 6.5%	2.25 to 3.75

Figure 4: KU Mix - Combined Individual Percent

Figure 5: MDOT Class AA - Combined Individual Percent Retained

Figure 6: MDOT Class AA with 25% C Fly Ash - Combined Individual Percent Retained

Figure 7: Research Mixes - Combined Individual Percent Retained

Figure 8: Blended Aggregates with 25% C Fly Ash-Combined Individual Percent Retained

Figure 9: Blended Aggregates 25% F Fly Ash - Combined Individual Percent Retained

Figure 10: MDOT BD - Combined Individual Percent Retained

Figure 11: MDOT BD 50% GGBFS - Combined Individual Percent Retained

Chapter 4 - Laboratory Testing

Mixing

Laboratory mixing was conducted in 1.5 cubic feet batch quantities using a revolving drum mixer in accordance with AASHTO R 39 / ASTM C 192 "Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory." Coarse aggregates were soaked for 24 hours and allowed to drain for 24 hours prior to mixing to ensure uniform moisture content. Fine aggregates were placed on a canvas and mixed to ensure uniform moisture. Total evaporable moisture content was determined according to AASHTO T 255 / ASTM C 566 "Total Evaporable Moisture Content of Aggregates by Drying" prior to each day's mixing operations. Laboratory mixtures were adjusted based on aggregate moisture. All aggregates were batched with free moisture on the surface.

In accordance with AASHTO R 39 / ASTM C 192, the revolving-drum mixer was buttered to compensate for any loss of mortar from the test batch. The mixer was then charged with the coarse and fine aggregates along with admixtures dispersed in half of the mixing water. A minimal number of revolutions of the drum were used to mix the aggregates, water, and admixtures. Cementitious materials and the remaining mixing water were then added to a stopped mixer. A 3 minute mixing, 3 minute rest, 2 minute final mixing pattern was performed taking steps to guard against both loss of moisture during the rest period and segregation of the materials when discharging into a wheel barrow.

Plastic Properties

The fresh concrete was tested for density, yield, slump, air content and temperature. Fresh properties were recorded for each mixture and these properties are presented in Tables 14 and 15. All testing was performed using ACI Certified Technicians according to the following applicable standards:

- **Density and Yield** AASHTO T 121 / ASTM C 138 "Standard Test Method for Density (Unit Weight), Yield, and Air Content (Gravimetric) of Concrete" (Figure 12)
- Slump AASHTO T 119 / ASTM C 143 "Standard Test Method for Slump of Hydraulic-Cement Concrete" (Figure 13)
- Air Content AASHTO T 196 / ASTM C 173 "Standard Test Method for Air Content of Freshly Mixed Concrete by the Volumetric Method" (Figure 14)
- Making and Curing Cylinder and Prisms AASHTO R 39 / ASTM C 192 "Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory." (Figure 15)
- **Temperature** ASTM C 1064 "Standard Test Method For Temperature of Freshly Mixed Hydraulic-Cement Concrete"

Mix No.	Mix Description	Slump (in.)	Air (%)	Temp (°F)	Unit Wt (lbs/ft ³)
Mix 1	Type I - KU Mix	*3.25	7.00	74.0	144.2
Mix 2.1	Type I - MDOT Class AA	*5.75	*6.75	73.4	141.9
Mix 3	Type I - 25% C Ash - MDOT Class AA	2.25	6.50	75.6	142.5
Mix 4	Type I	5.50	6.25	74.7	142.8
Mix 5	Type I - 25% C Ash	6.75	6.25	73.8	141.4
Mix 6	Type I - 25% F Ash	5.50	6.00	73.4	140.6
Mix 7	Type I - 50% GGBFS	3.00	6.00	73.7	141.8
Mix 8	Type GU	4.00	*7.00	73.6	139.5
Mix 9	Type GU - 25% C Ash	7.25	5.75	73.0	142.7
Mix 10	Type GU - 25% F Ash	6.75	5.50	73.2	142.0
Mix 11	Type GU - 50% GGBFS	6.00	*7.00	71.8	140.8
Mix 12	TYPE I - 25% C Ash Blended Aggregates	6.50	6.00	75.3	142.0
Mix 13	Type I - 25% F Ash Blended Aggregates	5.00	5.50	75.5	142.0
Mix 14	Type I - MDOT BD	2.50	7.50	73.6	139.7
Mix 15.1	Type I - 50% GGBFS MDOT BD	*4.25	*7.50	72.5	140.1

 Table 14: Plastic Properties - Mixes 1 - 15

*Denotes a value outside the parameters selected for the mixture.

Mix No.	Mix Description	Slump (in.)	Air (%)	Temp (°F)	Unit Wt (lbs/ft ³)
Mix 16	Type I - KU Mix	2.25	8.15	74.5	145.2
Mix 17	Type I - MDOT Class AA	3.00	*6.75	75.1	141.0
Mix 18	Type I - 25% C Ash - MDOT Class AA	*4.25	6.00	74.5	139.3
Mix 19	Type I	3.25	6.50	74.8	140.8
Mix 20.1	Type I - 25% C Ash	4.75	5.25	73.3	140.8
Mix 21	Type I - 25% F Ash	3.25	6.00	73.9	141.8
Mix 22	Type I - 50% GGBFS	5.75	5.50	73.6	142.0
Mix 23.1	Type GU	4.25	6.00	73.7	142.0
Mix 24	Type GU - 25% C Ash	6.75	5.50	73.3	141.4
Mix 25	Type GU - 25% F Ash	8.00	5.50	73.9	140.7
Mix 26	Type GU - 50% GGBFS	6.75	6.00	72.3	142.1
Mix 27.1	Type I - 25% C Ash Blended Aggregates	5.00	6.25	72.8	140.4
Mix 28	Type I - 25% F Ash Blended Aggregates	2.75	6.00	72.4	141.2
Mix 29	Type I - MDOT BD	3.75	7.50	73.6	139.8
Mix 30	Type I - 50% GGBFS MDOT BD	3.50	6.50	73.5	141.3

Table 15: Plastic Properties - Mixes 16 - 30

*Denotes a value outside the parameters selected for the mixture.

Figure 12: Unit Weight Testing

Figure 13: Slump Testing

Figure 14: Air Content Testing

Figure 15: Curing Cylinders

Compressive Strength

Compressive strength specimens were cast immediately following collection of the plastic properties. Certified technicians made the 4 x 8 in. specimens and consolidation was accomplished using a vibrating table. Upon completion of consolidation and strike-off finishing of the top surfaces, strength specimens were moved to a temperature controlled moisture room for curing. Eleven specimens were tested for each mixture as follows: 2 at 1 day, 2 at 7 days, 2 at 14 days, 3 at 28 days, and 2 at 56 days.

Length Change of Hardened Concrete

Length change, including expansion and shrinkage, was measured for each mixture according for AASHTO T 160 / ASTM C 157 "Length Change of Hardened Hydraulic-Cement Mortar and Concrete" and AASHTO M 210 / ASTM C 490 "Standard Practice for use of Apparatus for the Determination of Length Change of Hardened Cement Paste, Mortar, and Concrete." Specimens were cast according to AASHTO R 39 / ASTM C 192 utilizing prisms of 4 in. square cross sections and approximately 11 ¹/₄ in. long. Three specimens were cast for each mixture and consolidated with a vibrating table. Results shown in this report are calculated as the average of the three specimens.

Length Change - Sample Preparation

Specimens were cast and compacted utilizing an external vibratory table. Specimens were immediately placed in a moist curing room for a 24 hour initial curing period. Specimens were demolded at an age of 23.5 ± 0.5 hours and were labeled with identifying information using a permanent marker. Specimens were then placed into a lime-saturated water curing bath maintained at 73 ± 1 degree Fahrenheit for 30 minutes before initial comparator reading.

Length Change - Initial Testing

Specimens were removed from the lime-saturated curing bath and towel dried, leaving only a small amount of free water. They were then placed in a comparator measuring to the nearest 0.0001 in. where initial measurements were taken and compared to a standard reference bar (Figure 16). Specimens were removed from the comparator and returned to the lime-saturated curing bath until they reached an age of 28 days from the time they were cast. At the end of the 28 day curing period the specimens received a second comparator reading (Figure 17). This second comparator reading was used to calculate expansion or shrinkage as percent length change based on the initial comparator reading and a nominal gage length of 10 in.

Length Change - Specimen Dry Storage and Testing

Specimens were stored after the second reading in a temperature and humidity controlled environment of $50\% \pm 4\%$ relative humidity and 73 ± 3 ° F. Specimens were stacked on shelves with a clearance of at least 1 inch on all sides. Comparator readings were taken at 1, 28, 32, 35, 42, 56, 84, 140, 252, and 476 days after casting. Tables and figures in this report will indicate length change based on days in the temperature and humidity controlled room. These ages will be 4, 7, 14, 28, 56, 112, 224, and 448 days from the time the specimens were placed in the temperature and humidity controlled room, which is 28 days after casting.

Length Change - Calculations

Length change data was calculated and reported as a positive number if expansion occurred and a negative number (-) if shrinkage occurred. These data are reported to the nearest 0.0001%. The equation for calculating length change of specimens at any age as a percent of the initial comparator reading is as follows:

$$L = \frac{L_x - L_i}{G} * 100 \tag{8}$$

Where:

L = change in length at X age, %

 L_x = comparator reading of specimen at X age minus comparator reading of reference bar at X age; in inches

 L_i = initial comparator reading of specimen minus comparator readings of reference bar at that same time; in inches

G = nominal gauge length; 10 inches. This nominal gage length is the length between inside ends of gauge studs cast into the prism specimens and is 10 ± 0.1 in.

Figure 16: Comparator Reading of Standard Bar

Figure 17: Comparator Reading of Concrete Specimen

Resistance to Chloride Ion Penetrability

Resistance to chloride ion penetrability was determined according to AASHTO T 277 / ASTM 1202 "Standard Test Method for Electrical Indication of Concrete's Ability to Resist Chloride Ion Penetration." Specimens were cast utilizing 4 x 8 inch cylinder molds. Two specimens were cast for each mixture and the average coulomb reading of the two specimens was reported.

Penetrability - Sample Preparation

Specimens were cast and compacted utilizing an external vibratory table according to AASHTO 39 / ASTM C 192. Specimens were immediately placed into a moist curing room for a 24 hour initial curing period. After initial curing, specimens were labeled with identifying information using a permanent marker. Specimens were placed back into the moisture room and moist cured until the time of testing.

Penetrability - Specimen Preparation

Specimens were removed from the moisture curing room and the top 1/8 in. was removed utilizing a masonry wet saw. A second cut approximately 2 in. from the first cut produced a 2.0 $\pm 1/8$ in. sample for testing. The unused portion of the sample was immediately returned to the moisture room for future penetrability testing. The 2 in. thick samples were placed in a sink and cleaned with tap water to remove excessive saw cutting residue. Once cleaned, the samples were towel dried and placed in front of a fan to remove excess surface moisture. Once dry, the sample was taped on the cut side and trimmed in preparation for a non-permeable paint to be applied on the perimeter of the specimens. Once the paint dried, the tape was removed to expose the unpainted sections. The specimens were then placed into containers and water was added to

cover the specimens. Specimens were then placed back into the moisture room to keep the temperature constant for 18 ± 2 hours. Upon completion of the soak time the specimens were removed from the water and towel dried. Specimens were placed in the vacuum desiccators in a vacuum greater than 50 mm Hg. Once vacuum was achieved, they were left under vacuum for 3 hours and then water was introduced to the desiccators while maintaining the vacuum. The specimens remained under water and vacuum for one additional hour.

Penetrability - Testing Procedure

The specimens were removed from the desiccators and excess water was removed. Specimens were then placed in testing cells utilizing rubber gaskets and "C" clamps to prevent leaking (Figure 18). Testing cells had solutions of 3.0% sodium chloride (NaCl) in one cell and 0.3 normality (N) sodium hydroxide (NaOH) in an adjacent cell. A positive lead was attached to the cell containing the 0.3 N NaOH solution and a negative terminal attached to the cell with 3.0% NaCl. Ample solution was added to completely cover the entire ends of the specimens. An apparatus with a power supply and digital readout (Figure 19) was used to apply a constant 60 ± 0.1 volt DC current to the specimens and record coulombs. This apparatus was calibrated prior to each testing utilizing resistors and a volt meter. Once testing began the apparatus automatically took readings at 30 minute intervals and calculated the coulomb values. The testing intervals, cell number, milliamps, and coulombs were printed on a paper record. The coulomb value was calculated automatically by the digital voltage apparatus. The coulomb value was adjusted for specimen diameter according to AASHTO T 277 / ASTM C1202. This testing was conducted on two specimens cut from two cylinders and the average adjusted coulomb value was calculated and reported.

Figure 18: Penetrability Specimen in Test Cell

Figure 19: Chloride Ion Penetrability Apparatus

Chapter 5 - Results

Compressive Strength

Results from testing eleven compressive strength specimens per mixture are given in this section. These specimens were tested as follows; 2 at 1 day, 2 at 7 days, 2 at 14 days, 3 at 28 days, and 2 at 56 days. Results shown in this report are calculated as the average of specimens tested for each age. Compressive strength results of each specimen were rounded to the nearest 10 pounds per square inch (psi). These individual tests at each test age were averaged and rounded to the nearest 1 psi for reporting. Each mixture has an average compressive strength that exceeds MDOT's specified 28 day strength requirement of 4,000 psi for bridge deck concrete

Compressive Strength: Mixes 1 – 15

Average 28 day compressive strengths for mixes 1 through 15 ranged from 4,333 psi to 6,187 psi. The mixture with the highest average 28 day compressive strength was mix 11 which had a w/cm ratio of 0.48 (highest w/cm ratio used in this study), used 50% Type GU cement with 50% GGBFS, and had a total cementitious content of 507 pounds per cubic yard. The mixture with the highest 56 day compressive strength was mix 15.1 which had a w/cm ratio of 0.45 and used 50% Type I portland cement with 50% GGBFS. The mixture with the lowest average 28 day compressive strength was mix 6 which has a w/cm ratio of 0.48, used 75% Type I portland cement with 25% Class F fly ash, and had 497 pounds of cementitious material per cubic yard. The mixture with the lowest 56 day compressive strength was mix 1 (KU mix) which had a w/cm ratio of 0.45, and used 540 pounds of 100% Type I portland cement. Table 16 presents the

average compressive strengths and rankings for mixes 1 through 15. A ranking of 1 indicates the highest compressive strength and a ranking of 15 indicates the lowest compressive strength.

Mix No.	Mix Description	28 Day Avg. (psi)	28 Day Rank	56 Day Avg. (psi)	56 Day Rank
Mix 1	Type I - KU Mix	5,420	8	5,190	15
Mix 2.1	Type I - MDOT Class AA	5,757	4	6,355	3
Mix 3	Type I – 25% C Ash - MDOT Class AA	5,207	10	6,080	6
Mix 4	Туре І	5,603	5	5,855	8
Mix 5	Type I - 25% C Ash	5,080	11	5,745	10
Mix 6	Type I - 25% F Ash	4,333	15	5,405	14
Mix 7	Type I - 50% GGBFS	5,847	3	6,165	5
Mix 8	Type GU	5,423	7	5,755	9
Mix 9	Type GU - 25% C Ash	5,420	8	6,340	4
Mix 10	Type GU - 25% F Ash	4,970	12	5,720	11
Mix 11	Type GU - 50% GGBFS	6,187	1	6,705	2
Mix 12	Type I - 25% C Ash Blended Aggregates	5,430	6	5,865	7
Mix 13	Type I - 25% F Ash Blended Aggregates	4,880	13	5,555	12
Mix 14	Type I - MDOT BD	4,713	14	5,450	13
Mix 15.1	Type I - 50% GGBFS MDOT BD	6,147	2	6,795	1

 Table 16: Average Compressive Strength Ranking - Mixes 1 - 15

Compressive Strength: Mixes 16 - 30

Average 28 day compressive strengths for mix 16 through 30 ranged from 4,843 psi to 6,980 psi. The mixture with the highest average 28 day compressive strength was mix 30 which had a w/cm ratio of 0.45, used 50% Type I portland cement with 50% GGBFS, and had a total cementitious content of 564 pounds per cubic yard. The mixture with the highest 56 day compressive strength was mix 30 as well. The mix with the lowest average 28 day compressive strength was mix 16 (KU mix) which had a water cementitious ratio of 0.45, used 100% Type I portland cement, and had a total cement of 540 pounds of cement per cubic yard. The

mix with the lowest 56 day compressive strength was mix 16 as well. Table 17 presents the average compressive strengths and rankings for mixes 16 through 30. A ranking of 1 indicates the highest compressive strength and a ranking of 15 indicates the lowest.

Mir No	Mir Deconintion	28 Day	28 Day	56 Day	56 Day
IVIIX INO.	Mix Description	Avg. (psi)	Rank	Avg. (psi)	Rank
Mix 16	Type I - KU Mix	4,843	15	5,180	15
Mix 17	Type I - MDOT Class AA	5,793	8	5,955	12
Mix 18	Type I – 25% C Ash - MDOT Class AA	5,620	10	6,095	8
Mix 19	Type I	6,363	3	6,815	3
Mix 20.1	Type I - 25% C Ash	5,697	9	6,070	9
Mix 21	Type I - 25% F Ash	5,303	11	6,035	10
Mix 22	Type I - 50% GGBFS	5,917	7	5,970	11
Mix 23.1	Type GU	6,127	4	6,560	5
Mix 24	Type GU - 25% C Ash	6,093	5	6,590	4
Mix 25	Type GU - 25% F Ash	5,010	14	6,255	7
Mix 26	Type GU - 50% GGBFS	6,507	2	6,945	2
Mix 27.1	Type I - 25% C Ash Blended Aggregates	5,023	13	5,585	14
Mix 28	Type I - 25% F Ash Blended Aggregates	5,073	12	5,885	13
Mix 29	Type I - MDOT BD	6,017	6	6,315	6
Mix 30	Type I - 50% GGBFS MDOT BD	6,980	1	7,405	1

Table 17: Average Compressive Strength Ranking Mixes 16-30

Length Change

Testing was performed on all mixtures to determine unrestrained length change. The ages given in the tables and figures are not from time of casting, but from the time specimens were placed in the temperature and humidity controlled room. Data indicates that ultimate shrinkage occurred at 224 days of storage in the temperature and humidity controlled room. Ultimate shrinkage ranges from a low of (-) 0.0170% (mix 22 - 50% Type I portland cement with 50% GGBFS) to a high of (-) 0.0503% (mix 1 - KU - 100% Type I portland cement).

Length Change – Mixes 1 – 15

Average percent length change and rankings for mixes 1 through 15 are shown in Table 18. A ranking of 1 represents the lowest average 224 day shrinkage and a ranking of 15 represents the highest 224 day shrinkage. The 224 day shrinkage results for mixes 1 through 15 ranged from a low of (-) 0.0230% (mix 15.1 – 50% Type I portland cement with 50% GGBFS) to a high of (-) 0.0503% (KU – 100% Type I portland cement).

 Table 18: Average Percent Length Change and Ranking – Mixes 1 - 15

Mix No.	Mix Description	28 Day	56 Day	112 Day	224 Day	442 Day	Rank
Mix 1	Type I - KU Mix	-0.0223	-0.0307	-0.0457	-0.0503	-0.0477	15
Mix 2.1	Type I - MDOT Class AA	-0.0253	-0.0327	-0.0393	-0.0437	-0.0367	11
Mix 3	Type I - 25% C Ash - MDOT Class AA	-0.0120	-0.0180	-0.0323	-0.0390	-0.0363	9
Mix 4	Type I	-0.0143	-0.0193	-0.0340	-0.0337	-0.0333	6
Mix 5	Type I - 25% C Ash	-0.0143	-0.0210	-0.0347	-0.0393	-0.0353	10
Mix 6	Type I - 25% F Ash	-0.0023	-0.0057	-0.0193	-0.0240	-0.0203	3
Mix 7	Type I - 50% GGBFS	-0.0043	-0.0100	-0.0240	-0.0293	-0.0263	4
Mix 8	Type GU	-0.0193	-0.0257	-0.0403	-0.0440	-0.0393	12
Mix 9	Type GU - 25% C Ash	-0.0153	-0.0203	-0.0317	-0.0363	-0.0320	8
Mix 10	Type GU - 25% F Ash	-0.0057	-0.0123	-0.0240	-0.0297	-0.0270	5
Mix 11	Type GU - 50% GGBFS	0.0040	0.0003	-0.0153	-0.0233	-0.0227	2
Mix 12	TYPE I - 25% C Ash Blended Aggregates	-0.0137	-0.0237	-0.0400	-0.0440	-0.0440	13
Mix 13	Type I - 25% F Ash Blended Aggregates	-0.0110	-0.0163	-0.0300	-0.0340	-0.0330	7
Mix 14	Type I - MDOT BD	-0.0170	-0.0267	-0.0413	-0.0463	-0.0463	14
Mix 15.1	Type I - 50% GGBFS MDOT BD	-0.0110	-0.0167	-0.0237	-0.0230	-0.0243	1

Length Change – Mixes 16 – 30

Average percent shrinkage and rankings are presented in Table 19 for mixes 16 through 30. The 224 day shrinkage results for mixes 16 through 30 ranged from a low of (-) 0.0170%

(mix 22 - 50% Type I portland cement with 50% GGBFS) to a high of (-) 0.0487% (mix 29 -

MDOT Class BD – 100% Type I portland cement).

Mix No.	Mix Description	28 Day	56 Day	112 Day	224 Day	442 Day	Rank
Mix 16	Type I - KU Mix	-0.0067	-0.0213	-0.0290	-0.0337	-0.0307	6
Mix 17	Type I - MDOT Class AA	-0.0133	-0.0317	-0.0380	-0.0433	-0.0390	11
Mix 18	Type I - 25% C Ash - MDOT Class AA	-0.0053	-0.0207	-0.0277	-0.0327	-0.0280	5
Mix 19	Туре І	-0.0207	-0.0383	-0.0440	-0.0473	-0.0460	13
Mix 20.1	Type I - 25% C Ash	-0.0193	-0.0363	-0.0433	-0.0450	-0.0437	12
Mix 21	Type I - 25% F Ash	-0.0093	-0.0250	-0.0300	-0.0307	-0.0273	4
Mix 22	Type I - 50% GGBFS	0.0087	-0.0070	-0.0140	-0.0170	-0.0140	1
Mix 23.1	Type GU	-0.0250	-0.0320	-0.0390	-0.0420	-0.0353	8
Mix 24	Type GU - 25% C Ash	-0.0187	-0.0353	-0.0407	-0.0423	-0.0413	9
Mix 25	Type GU - 25% F Ash	-0.0223	-0.0283	-0.0333	-0.0403	-0.0337	7
Mix 26	Type GU - 50% GGBFS	-0.0107	-0.0153	-0.0217	-0.0293	-0.0277	3
Mix 27.1	TYPE I - 25% C Ash Blended Agg	-0.0303	-0.0360	-0.0463	-0.0477	-0.0433	14
Mix 28	Type I - 25% F Ash Blended Agg.	-0.0270	-0.0337	-0.0413	-0.0430	-0.0387	10
Mix 29	Type I - MDOT BD	-0.0277	-0.0367	-0.0443	-0.0487	-0.0437	15
Mix 30	Type I - 50% GGBFS MDOT BD	-0.0037	-0.0090	-0.0183	-0.0273	-0.0263	2

Table 19: Average Percent Length Change and Ranking – Mixes 16 through 30

Penetrability

A summary of chloride ion penetrability data is presented in Table 20 for mixes 1 through 15 and Table 21 for mixes 16 through 30. These data are ranked by 365 day results. A ranking of 1 indicates the mixture with the lowest average coulombs and a ranking of 15 indicates the mixture with the highest average coulombs.

Mix No.	Mix Description	28 Day (Coulombs)	91 Day (Coulombs)	365 Day (Coulombs)	Rank
Mix 1	Type I - KU Mix	2,151	1,675	1,191	14
Mix 2.1	Type I - MDOT Class AA	1,505	1,327	1,004	11
Mix 3	Type I – 25% C Ash - MDOT Class AA	1,668	789	492	8
Mix 4	Туре І	1,749	1,475	1,328	15
Mix 5	Type I - 25% C Ash	2,638	1,343	871	10
Mix 6	Type I - 25% F Ash	2,149	708	246	3
Mix 7	Type I - 50% GGBFS	790	368	318	5
Mix 8	Type GU	2,112	1,312	1,134	12
Mix 9	Type GU - 25% C Ash	1,828	1,089	321	6
Mix 10	Type GU - 25% F Ash	2,196	805	189	1
Mix 11	Type GU - 50% GGBFS	415	251	204	2
Mix 12	Type I - 25% C Ash Blended Agg	2,526	1,302	675	9
Mix 13	Type I - 25% F Ash Blended Agg.	2,465	816	273	4
Mix 14	Type I - MDOT BD	1,717	1,377	1,191	13
Mix 15.1	Type I - 50% GGBFS MDOT BD	714	444	328	7

 Table 20: Chloride Ion Penetrability - Mixes 1 - 15.1

Mix No	Mix Description	28 Day	91 Day	365 Day	Rank
	witz Description	(Coulombs)	(Coulombs)	(Coulombs)	Nalik
Mix 16	Type I - KU Mix	1,474	1,144	1,053	10
Mix 17	Type I - MDOT Class AA	1,628	1,354	1,245	13
Mix 18	Type I – 25% C Ash - MDOT Class AA	2,778	1,222	638	8
Mix 19	Туре І	2,109	1,866	1,615	14
Mix 20.1	Type I - 25% C Ash	4,088	1,780	489	7
Mix 21	Type I - 25% F Ash	2,093	735	275	4
Mix 22	Type I - 50% GGBFS	799	468	339	6
Mix 23.1	Type GU	1,972	1,750	1,677	15
Mix 24	Type GU - 25% C Ash	1,944	1,001	1,018	9
Mix 25	Type GU - 25% F Ash	1,930	613	200	2
Mix 26	Type GU - 50% GGBFS	424	290	193	1
Mix 27.1	Type I - 25% C Ash Blended Agg	2,883	1,703	1,189	11
Mix 28	Type I - 25% F Ash Blended Agg.	2,723	1,078	324	5
Mix 29	Type I - MDOT BD	1,865	1,598	1,194	12
Mix 30	Type I - 50% GGBFS MDOT BD	464	337	251	3

 Table 21: Chloride Ion Penetrability - Mixes 16 - 30

Chapter 6 – Discussion of Results

Mixture parameters, plastic properties and test results are presented in Tables 23 for mixes 1 through 15.1 and in Table 24 for mixes 16 through 30. Raw data for each mixture are presented in Appendix A. Raw data for shrinkage and permeability are presented in Appendix B.

Compressive Strength

Compressive Strength: Research Mixes 4 – 11

Mixes 4 through 11 are similar mixtures having the same gravel aggregate source (source number one), same w/cm ratio, and same volume of cementitious paste (cementitious material plus water). The w/cm ratio for these mixtures was 0.48 and the total cementitious paste volume was 24.47 percent. The difference in these mixes was in the cementitious materials. Type I portland cement was used in mixes 4 through 7 and Type GU cement was used in mixes 8 through 11. Combinations of 25 % Class C fly ash, 25% Class F fly ash, and 50% GGBFS are included with each type of cement. Figure 20 illustrates strength gain versus time for mixes 8 through 11.

The highest 28 day and 56 day compressive strengths in mixes 4 through 7 were mixtures that included 50% Type I portland cement with 50% GGBFS (Figure 20). 100% Type I portland cement provided the next highest compressive strengths followed by mixtures with 25% Class C fly ash then 25% Class F fly ash. Compressive strengths in mixtures with 100% Type I (mix 4) and 100% Type GU (mix 8) cement were similar. However, when SCMs were used in combination with Type GU cement, higher compressive strengths are achieved. This higher strength was more notable when Type GU cement was combined with Class C fly ash. Similar

to mixtures with Type I portland cement, Type GU cement mixtures achieved the highest 28 day and 56 day compressive strengths when combined with 50% GGBFS.

Early strength is an important consideration with mixture proportioning because of construction scheduling. The faster concrete sets the faster the contractor can finish a project. In all cases for mixes 4 through 11, 100% Type I portland cement or 100% Type GU cement mixes achieved the highest one day compressive strengths. Mixtures with 25% Class C and Class F fly ash produced similar compressive strengths at one day and these strengths were 70 percent of the strength of similar mixes with 100% Type I portland cement or 100% Type GU cement. Mixes using 50% GGBFS had roughly 25 percent of the one day compressive strengths of similar mixes with 100% Type I portland cement.

Figure 20: Average Compressive Strength VS Age Mixes 4-7

Figure 21: Average Compressive Strength VS Age Mixes 8-11

Compressive Strength: Research Mixes 19 – 26

Mixes 19 through 26 were similar mixtures having the same gravel aggregate source (source number two), same w/cm ratio, and same volume of cementitious paste. The w/cm ratio for these mixtures was 0.48 and the total cementitious paste volume was 24.47 percent. The difference in these mixes was in the cementitious materials. Type I portland cement was used in mixes 19 through 22 and Type GU cement was used in mixes 23.1 through 26. Combinations of 25 % Class C fly ash, 25% Class F fly ash, and 50% GGBFS were included with each type of
cement. Figure 22 illustrates strength gain versus time for mixes 19 through 22 and Figure 23 illustrates strength gain versus time for mixes 23.1 through 26.

The mixture with the highest 28 day and 56 day compressive strengths of mixtures 19 through 22 was mix 19 using 100% Type I portland cement. This higher compressive strength was not expected and may indicate an outlier in the data. The highest compressive strengths in similar research mixtures all had 50% GGBFS. The mixture using 50% Type I cement with 50% GGBFS provided the next highest 28 day compressive strength followed by mixtures with 25% Class C fly ash and then 25% Class F fly ash. Interestingly, all mixtures with SCMs had similar 56 day compressive strengths.

The mixture with the highest 28 day and 56 day compressive strengths of mixes 23 through 26 was mix 26 using 50% Type GU cement with 50% GGBFS. 100% Type GU cement and 25% Class C fly ash mixtures had the next highest compressive strengths followed by the 25% Class F fly ash mixture.

In all cases for mixes 19 through 26, 100% Type I portland cement and 100% Type GU cement mixtures achieved the highest one day compressive strengths. Mixtures with 25% Class C fly ash and Class F fly ash produced roughly the same compressive strengths at one day and these strengths were 58 percent of the strength of similar mixtures with 100% Type I portland cement or 100% Type GU cement. Mixes 22 and 26, using 50% GGBFS, had 31 percent of the one day compressive strengths of similar mixes with 100% Type I portland cement or Type GU cement.

Figure 22: Average Compressive Strength VS Age - Mixes 19-22

Figure 23: Average Compressive Strength VS Age Mixes 23.1 – 26

Compressive Strength: Mixes 1, 14, and 15.1

Mixes 1, 14, and 15.1 all had a w/cm ratio of 0.45 and used aggregate gradation optimization. Total cementitious contents were 540, 525, and 509 pounds per cubic yard, respectively. Average compressive strengths versus age for these mixes are illustrated in Figure 24. Mix 1 and 14 included 100% Type I portland cement and mix 15.1 included 50% Type I portland cement with 50% GGBFS. Crushed limestone coarse aggregates were used for mix 1. Mixes 14 and 15.1 utilized gravel aggregates. Mix 15.1 using 50% Type I portland cement

with 50% GGBFS (lowest total cementitious) provided higher 28 day and 56 compressive strengths than the 100% Type I cement mixtures.

Figure 24: Average Compressive Strength VS Age Mixes 1, 14 and 15.1

Compressive Strength: Mixes 16, 29, and 30

Mixes 16, 29, and 30 all had a w/cm ratio of 0.45 and all utilized aggregate gradation optimization. Total cementitious contents were 540, 564, and 564 pounds per cubic yard, respectively. Average compressive strengths versus age are illustrated in Figure 25. Mix 16 had 540 pounds per cubic yard of 100% Type I portland cement. Mixes 29 and 30 had 564 pounds of cementitious materials per cubic yard. Mix 29 included 100% Type I cement and mix 30 had

50% Type I portland cement with 50% GGBFS. Mix number 16 utilized crushed limestone coarse aggregates and mixes 29 and 30 utilized gravel aggregates. Mix 30, using 50% Type I portland cement with 50% GGBFS, provided higher 28 day and 56 compressive strengths than 100% Type I portland cement mixtures. Mix 29 (MDOT BD) had lower 28 day and 56 day compressive strengths than mix 30 followed by mix number 16 (KU).

Figure 25: Average Compressive Strength VS Age Mixes 16, 29, and 30

Compressive Strength: MDOT Class AA Mixes 2.1, 3, 17, and 18

Mixes 2.1, 3, 17, and 18 provide examples of typical MDOT Class AA bridge deck mixtures. Figures 26 and 27 illustrate average compressive strength versus age. All had a w/cm ratio of 0.40 and a total cementitious content of 588 pounds per cubic yard. Mixes 2.1 and 17 used 100% Type I portland cement while mixes 3 and 18 had 75% Type I portland cement with 25% Class C fly ash. The primary difference in the mixes being that mixes 2.1 and 3 utilized gravel aggregate source number one and mixes 17 and 18 utilized aggregate source number two.

These mixtures produced similar 28 and 56 day compressive strengths.

Figure 26: Average Compressive Strength VS Age Mixes 2.1 and 3

Figure 27: Average Compressive Strength VS Age Mixes 17 and 18

Compressive Strength: Blended Aggregate Mixes 12 and 13

Mixes 12 and 13 incorporate aggregate gradation optimization by blending No. 57 and No. 8 from gravel source one to decrease cementitious content by increased workability achieved through blending these aggregates. The main difference in these two mixes was the class of fly ash used. Water and cementitious materials were adjusted for mixes 12 and 13 to produce similar slumps to their companion mixtures 5 and 6, respectively. Figure 28 illustrates average compressive strength versus age and the strengths are similar for all mixtures. Mixtures with

Class F fly ash had lower 28 day and 56 day compressive strengths than mixtures with Class C fly ash.

Figure 28: Average Compressive Strength VS Age Mixes 5, 6, 12, 13

Compressive Strength: Blended Aggregate Mixes 27.1 and 28

Aggregate gradation optimization was incorporated in mixes 27.1 and 28 by blending No. 57 and No. 8 gravel from gravel source two in order to decrease cementitious content by increased workability achieved through blending these aggregates. Water and cementitious materials were adjusted for mixes 27.1 and 28 to produce slump test results similar to their

companion mixtures 20.1 and 21, respectively. Figure 29 illustrates average compressive strength versus age for these mixtures. Compressive strengths were similar when comparing these four mixtures.

Figure 29: Average Compressive Strength VS Age Mixes 20.1, 21, 27.1, 28

Length Change

Length Change – KU Mixes 1 and 16

Mixes 1 and 16 incorporated aggregate gradation optimization to fill voids with aggregates in order to reduce cement paste shrinkage. Figure 30 illustrates percent length change

versus age for mixes 1 and 16. The KU software was used to optimize these mixtures and each mixture has combined aggregate gradations that are within KDOT's limits for individual percent retained with one exception. Mix 1 had a combined individual percent retained on the No. 16 sieve of 7.5% which is 0.5% under the limit. CF and AWF for these mixtures are within Zone II (optimal) of the Coarseness Factor Chart. Mix 1 produced a length change of (-) 0.0503 percent at 224 days and this was the highest shrinkage of all mixtures included in this study. Mix 16 produced a length change of (-) 0.0337 percent which was the lowest 224 day shrinkage when compared to all other mixtures using 100% Type I or 100% Type GU cement. An interesting observation when comparing these two mixes, mix 1 had limestone aggregates (Source 1, Table 8) with slightly more water absorption than the limestone aggregates (Source 2, Table 9) utilized within mix 16. The overall water absorption for mix 1 was 1.02 percent which is above the 0.7 percent required for coarse aggregates used in the KU method, while the overall water absorption for mix 16 was less than 0.7 percent at 0.61 percent.

Figure 30: Average Length Change VS Age - Mixes 1 and 16

Length Change – MDOT Class AA Mixes 2.1, 3, 17, and 18

Mixes 2.1, 3, 17, and 18 represent typical mixtures used by MDOT for bridge decks before Class BD concrete was incorporated in project specifications. Results from shrinkage testing of these mixtures are illustrated in Figure 31. 224 day shrinkage results ranged from (-) 0.0327 percent for mix 18 to (-) 0.0437 percent for mix 2.1. The average 224 day shrinkage of mixes 2.1 and 17 (100% Type I portland cement) was (-) 0.0435 percent. Mixes 3 and 18 used 75% Type I portland cement with 25% Class C fly ash and the data indicates less volume change than mixes 2.1 and 17. The average 224 day shrinkage of mixes 3 and 18 was (-) 0.0359 percent. The average percent 224 day shrinkage for all MDOT Class AA mixes was (-) 0.0397 percent.

MDOT Class AA mixtures using 75% Type I portland cement with 25% Class C fly ash on average had 82 percent of the shrinkage of similar MDOT Class AA mixtures that use 100% Type I portland cement.

Figure 31: Average Length Change VS Age - MDOT Class AA Mixes 2.1, 3, 17, and 18 Length Change: Research Mixes 4 – 11 and 19 - 26

Average percent length change versus age data for mixes 4 through 11 and 19 through 26 are illustrated in Figures 32 through 35. These mixtures were all similar with two exceptions. Mixes 4 through 11used gravel aggregate source one and mixes 19 through 26 used gravel aggregate source number two. In addition, the type of cement and SCMs vary between mixtures.

The data indicates that SCMs have a significant influence on the amount of length change experienced with each of these mixtures. While mixtures with SCMs did not provide the same results in all cases, the majority of the data shows that SCMs reduced the amount of length change compared to mixtures with no SCMs. Mixtures with 100% Type I or 100% Type GU cement produced the greatest amount of length change. Mixtures with 25% Class C fly ash performed similar to mixtures with 100% Type I or 100% Type GU cement. Mixtures with 25% Class F fly ash performed better than mixtures with 100% Type I or 100% Type GU cement and better than mixtures with 25% Class C fly ash. Mixtures with 50% GGBFS performed best relative to length change when compared to similar mixtures using 25% Class C fly ash, 25% Class F fly ash or mixtures with 100% Type I or 100% Type GU cement.

Figure 32: Average Length Change VS Age - Mixes 4 - 7

Figure 33: Average Length Change VS Age – Mixes 8 - 11

Figure 34: Average Length Change VS Age - Mixes 19 - 22

Figure 35: Average Length Change VS Age - Mixes 23.1 - 26 Length Change – Blended Aggregate Mixes 12, 13, 27.1, and 28

Blended aggregate mixtures and companion mixtures are as follows: Mix 12 and 5, Mix 13 and 6, Mix 27.1 and 20.1, Mix 28 and 21. Mixes 5, 6, 20.1, and 21 were produced before the blended aggregate mixtures in order to optimize water required to produce similar slump test results. The w/cm ratio of all of these mixtures was 0.48. The addition of the No. 8 gravel on average allowed a reduction in water of approximately one gallon per cubic yard. Figures 36 and 37 provide an illustration of shrinkage data for the blended aggregate mixtures along with their companion mixtures. In all cases, the addition of the No. 8 gravel to optimize aggregate

gradation increases 224 day shrinkage even though water and cement are reduced relative to companion mixtures. The shrinkage of mixtures that use 75% Type I portland cement with 25% Class F fly ash were impacted most by aggregate blending with an average increase in shrinkage of 41 percent relative to their companion mixtures. The blended aggregate mixtures using 75% Type I portland cement with 25% Class C fly ash had an average increase in shrinkage of 9 percent relative to their companion mixtures. Mixtures using 75% Type I portland cement with 25% Class F fly ash had less shrinkage than mixtures using 75% Type I portland cement with 25% Class C fly ash.

Figure 36: Average Length Change VS Age - Blended Aggregate Mixes 12 and 13

Figure 37: Average Length Change VS Age - Blended Aggregates Mixes 27.1 and 28

Length Change - MDOT BD Mixes 14, 15.1, 29, and 30

Mixes 14, 15.1, 29, and 30 incorporated MDOT's Class BD specifications for bridge deck concrete. Mixes 14 and 15.1 used 100% Type I portland cement. Mixes 15.1 and 30 used 50% Type I portland cement with 50% GGBFS. Shrinkage data for these mixtures are illustrated in Figure 38. The average 224 day shrinkage of mixes 14 and 29 was (-) 0.0475 percent. The average 224 day shrinkage of mixes 15.1 and 30 was (-) 0.0252 percent. MDOT Class BD mixtures that include 50% GGBFS on average have 53 percent of the 224 day shrinkage of similar MDOT Class BD mixtures with 100% Type I portland cement.

Figure 38: Average Length Change VS Age - MDOT BD Mixes 14, 15.1, 29, and 30

Shrinkage VS Cementitious Material and Total Cementitious Content

The influence of cementitious materials and total cementitious content on shrinkage is illustrated for all mixtures in Figures 39 and 40. These data indicate that high shrinkage mixtures can be produced with mixtures having high or low total cementitious content. High and low shrinkage mixtures can also be produced with the same total cementitious contents.

Figure 39: Average Length Change VS Cementitious Content - Mixes 1 -15

Notes for Figure 39: The number indicates mix number. I denotes 100% Type I portland cement, GU denotes 100% Type GU cement, C denotes mixes with 25% C ash, F denotes mixes with 25% F ash, and S denotes mixes with 50% GGBFS.

Figure 40: Average Length Change VS Cementitious Content - Mixes 16 - 30

Notes for Figure 40: The number indicates mix number. I denotes 100% Type I portland cement, GU denotes 100% Type GU cement, C denotes mixes with 25% C ash, F denotes mixes with 25% F ash, and S denotes mixes with 50% GGBFS.

Chloride Ion Penetrability

Average penetrability of concrete expressed in coulombs was determined at specimen ages of 28, 91, and 365 days for each mixture. A table indicating electrical charge passed in coulombs and concrete performance related to chloride ion penetration is presented in AASHTO T 277 and ASTM C 1202 standards. This table sets ranges for coulombs passed correlated with a rating for the concrete from negligible to high. Table 22 contains table "Chloride ion Penetrability based on Charge Passed" from AASHTO T 277 / ASTM C1202.

Charge Passed (coulombs)	Chloride Ion Penetrability
>4,000	High
2,000 - 4,000	Moderate
1,000 - 2,000	Low
100 - 1,000	Very Low
<100	Negligible

Table 22: Chloride Ion Penetrability based on Charge Passed

Chloride Ion Penetrability Data

Chloride ion penetrability test results performed at 28 days are presented in Figure 41. Mix 20.1, using 75% Type I portland cement with 25% Class C ash, was the only mixture that had high chloride ion penetrability according to Table 22. All other 28 day results indicate moderate to very low chloride ion penetrability. Mixes 7, 11, 15.1, 22, 26, and 30 had very low chloride ion penetrability at 28 days and were the best performers. All of these best performing mixtures contained 50% GGBFS.

Figure 41: 28 Day Chloride Ion Penetrability - All Mixes

Chloride ion penetrability test results performed at 91 days are presented in Figure 42. All mixtures had low chloride ion penetrability at 91 days. Several mixtures had very low chloride ion penetrability including mixes 3, 6, 7, 10, 11, 13, 15.1, 21, 22, 24, 25, 26, and 30. All of these best performers contained SCMs. All mixtures with 50% GGBFS and all but one of the mixtures with 25% Class F fly ash had very low chloride ion penetrability. This one mixture was mix 28.

Figure 42: 91 Day Chloride Ion Penetrability - All Mixes

Chloride ion penetrability test results performed at 365 days are presented in Figure 43. Over half of the mixtures had very low chloride ion penetrability including mixes 3, 5, 6, 7, 9, 10, 11, 12, 13, 15.1, 18, 20.1, 21, 22, 25, 26, 28, and 30. All of these best performers contained SCMs. None of the mixtures in this study with 100% Type I or 100% Type GU cement achieved very low chloride ion penetrability. This included mixes 2.1 and 17 using MDOT Class AA criteria with a w/c ratio of 0.40.

Figure 43: 365 Day Chloride Ion Penetrability - All Mixes

Mix Identifiers		Design Parameters		Plastic Properties				Test Results				
				Water	Cementitious	Paste			Unit	28 Day	28 Day	224 Day
Mix No	Mixture Description	Aggregate Type	w/cm Ratio	Content lbs/yd ³	Content lbs/yd ³	Volume %	Slump In.	Air %	Weight lbs/ft ³	Compressive	Permeability Coulombs	Shrinkage %
1	Type I - KU Mix	Limestone	0.45	243.00	540.00	24.60%	3.25	7.00	144.2	5,420	2,151	-0.0503
2.1	Type I - MDOT Class AA	Gravel	0.40	235.20	588.00	25.04%	5.75	6.75	141.9	5,757	1,505	-0.0437
3	Type I - 25% C Ash - MDOT Class AA	Gravel	0.40	235.20	588.00	25.57%	2.25	6.50	142.5	5,207	1,668	-0.0390
4	Туре І	Gravel	0.48	248.16	517.00	24.47%	5.50	6.25	142.8	5,603	1,749	-0.0337
5	Type I - 25% C Ash	Gravel	0.48	243.48	507.25	24.47%	6.75	6.25	141.4	5,080	2,638	-0.0393
6	Type I - 25% F Ash	Gravel	0.48	238.52	496.91	24.47%	5.50	6.00	140.6	4,333	2,149	-0.0240
7	Type I - 50% GGBFS	Gravel	0.48	243.79	507.90	24.47%	3.00	6.00	141.8	5,847	790	-0.0293
8	Type GU	Gravel	0.48	246.90	514.37	24.47%	4.00	7.00	139.5	5,423	2,112	-0.0440
9	Type GU - 25% C Ash	Gravel	0.48	242.57	505.35	24.47%	7.25	5.75	142.7	5,420	1,828	-0.0363
10	Type GU - 25% F Ash	Gravel	0.48	237.64	495.08	24.47%	6.75	5.50	142.0	4,970	2,196	-0.0297
11	Type GU - 50% GGBFS	Gravel	0.48	243.18	506.64	24.47%	6.00	7.00	140.8	6,187	415	-0.0233
12	Type I - 25% C Ash Blended Agg	Gravel	0.48	232.00	483.00	23.31%	6.50	6.00	142.0	5,430	2,526	-0.0440
13	Type I - 25% F Ash Blended Agg.	Gravel	0.48	235.00	490.00	24.12%	5.00	5.50	142.0	4,880	2,465	-0.0340
14	Type I - MDOT BD	Gravel	0.45	236.00	525.00	23.90%	2.50	7.50	139.7	4,713	1,717	-0.0463
15.1	Type I - 50% GGBFS MDOT BD	Gravel	0.45	229.00	509.00	23.61%	4.25	7.50	140.1	6,147	714	-0.0230

Table 23: Mixture Parameters, Plastic Properties, Test Results - Mixes 1-15.1 (Aggregate Source 1)

Mix Identifiers		Design Parameters		Plastic Properties				Test Results				
						Paste			Unit	28 Day	28 Day	224 Day
Mix No	Mixture Description	Aggregate Type	w/cm Ratio	Water Content lbs/yd ³	Cementitious Content lbs/yd ³	Volume %	Slump In.	Air %	Weight lbs/ft ³	Compressive psi	Permeability Coulombs	Shrinkage %
16	Type I - KU Mix	Limestone	0.45	243.00	540.00	24.60%	2.25	8.15	145.2	4,843	1,474	-0.0337
17	Type I - MDOT Class AA	Gravel	0.40	235.20	588.00	25.04%	3.00	6.75	141.0	5,793	1,628	-0.0433
18	Type I - 25% C Ash - MDOT Class AA	Gravel	0.40	235.20	588.00	25.57%	4.25	6.00	139.3	5,620	2,778	-0.0327
19	Туре I	Gravel	0.48	248.16	517.00	24.47%	3.25	6.50	140.8	6,363	2,109	-0.0473
20.1	Type I - 25% C Ash	Gravel	0.48	243.48	507.25	24.47%	4.75	5.25	140.8	5,697	4,088	-0.0450
21	Type I - 25% F Ash	Gravel	0.48	238.52	496.91	24.47%	3.25	6.00	141.8	5,303	2,093	-0.0307
22	Type I - 50% GGBFS	Gravel	0.48	243.79	507.90	24.47%	5.75	5.50	142.0	5,917	799	-0.0170
23	Type GU	Gravel	0.48	246.90	514.37	24.47%	4.25	6.00	142.0	6,127	1,972	-0.0420
24	Type GU - 25% C Ash	Gravel	0.48	242.57	505.35	24.47%	6.75	5.50	141.4	6,093	1,944	-0.0423
25	Type GU - 25% F Ash	Gravel	0.48	237.64	495.08	24.47%	8.00	5.50	140.7	5,010	1,930	-0.0403
26	Type GU - 50% GGBFS	Gravel	0.48	243.18	506.64	24.47%	6.75	6.00	142.1	6,507	424	-0.0293
27	Type I - 25% C Ash Blended Agg.	Gravel	0.48	235.00	490.00	23.63%	5.00	6.25	140.4	5,023	2,883	-0.0477
28	Type I - 25% F Ash Blended Agg.	Gravel	0.48	225.50	470.00	23.14%	2.75	6.00	141.2	5,073	2,723	-0.0430
29	Type I - MDOT BD	Gravel & Limestone	0.45	254.00	564.00	25.70%	3.75	7.50	139.8	6,017	1,865	-0.0487
30	Type I - 50% GGBFS MDOT BD	Gravel & Limestone	0.45	254.00	564.00	26.18%	3.50	6.50	141.3	6,980	464	-0.0273

Table 24: Mixture Parameters, Plastic Properties, Test Results - Mixes 16-30 (Aggregate Source 2)

Chapter 7 – Analysis of Shrinkage Data

Influence of SCMs on Shrinkage

SCMs appear to have a significant impact on shrinkage of the mixtures developed for this study. This influence is illustrated in Figure 44. A comparison can also be made between 100% Type I or 100% Type GU cement mixtures and mixtures containing SCMs by simply calculating average 224 day length change percentage for all mixtures with 100% cement, all mixtures with 25% Class C fly ash, all mixtures with 25% Class F fly ash, and all mixtures with 50% GGBFS. Mixtures with 25% Class C fly ash have average 224 day shrinkage of 94 percent of the average shrinkage of 100% cement mixtures. The data indicates a significant reduction in length change when averages are used to compare 25% Class F fly ash mixtures and 50% GGBFS mixtures with 100% cement mixtures. Mixtures with 25% Class F fly ash have average 224 day shrinkage of 78 percent of mixtures with 100% cement. Mixtures with 50% GGBFS have an average 224 day shrinkage of 58 percent of mixtures with 100% cement.

Figure 44: 224 Day Shrinkage For All Mixtures

Influence of Aggregate Gradation Optimization on Shrinkage

Aggregate gradation optimization was used in mix 1 and 16 (KU mixes) as a strategy to reduce cementitious paste and shrinkage. Aggregates for these mixtures comply with KDOT's specification for combined individual percent retained. CF and AWF of these mixtures are within Zone II (optimal) of the Coarseness Factor Chart. Mix 1 produced a length change of (-) 0.0503 percent at 224 days and this was the highest observed shrinkage when compared to all other mixtures. Mix 16 had a length change of (-) 0.0337 percent which was the lowest shrinkage

observed when compared to all other mixtures using 100% Type I or 100% Type GU cement. The primary difference in mixes 1 and 16 was the absorption of the aggregates. Mix 1 had a combined aggregate absorption of 1.02 percent and mix 16 had a combined aggregate absorption of 0.61percent. This higher absorption may have influenced length change in these two mixes. Aggregates with high absorption may release more moisture during drying shrinkage compared to aggregates that have less absorption and this additional loss of moisture may result in higher length changes.

Aggregate gradation optimization was used in the MDOT Class BD concrete mixtures (mixes 14, 15.1, 29, 30), but was not used for MDOT Class AA mixtures (mixes 2.1, 3, 17, 18). A comparison can be made between these MDOT classes of concrete that utilized 100% Type I portland cement for influence on shrinkage. Figures 45 and 46 illustrate shrinkage associated with these mixtures. Mixes 14 and 29 were based on requirements of MDOT Class BD concrete and utilized the KU software to optimize these mixtures. CF and AWF were within MDOT's limits, but combined gradations do not meet MDOT's specification for combined individual percent retained because of the particle size distribution of Mississippi's natural gravel. Mixes 14 and 29 were similar mixes with different sources of gravel and different cement content. Mix 14 had 224 day shrinkage of (-) 0.0463 percent which was the second highest shrinkage when compared to all other 100% Type I or 100% Type GU cement mixtures using aggregate source number one. Mix number 29 had a 224 day shrinkage of (-) 0.0487 percent which was the highest shrinkage data when compared to all other 100% Type I or Type GU cement mixtures using aggregate source number two. MDOT Class BD mixtures using 100% Type I portland cement had an average 224 day shrinkage of (-) 0.0475 percent while MDOT Class AA mixtures with 100% Type I portland cement has an average 224 day shrinkage of (-) 0.0435. This slight increase in shrinkage of the MDOT Class BD over MDOT Class AA occurred even though MDOT Class BD mixtures had aggregate gradation optimization and lower cement contents. MDOT Class AA (w/cm = 0.40) has a lower w/c ratio than MDOT Class BD (w/cm = 0.45) and this lower w/cm appears to have influenced shrinkage as much as aggregate gradation optimization.

Figure 45: Average Length Change VS Age - Mixes 2.1 and 14

Figure 46: Average Length Change VS Age - Mixes 17 and 29

The blended aggregate mixtures, mixes 12, 13, 27.1 and 28, provided another example of increased shrinkage associated with aggregate gradation optimization. Figures 36 and 37 illustrate this increased shrinkage. This increase in shrinkage occurred by simply adding a No. 8 gravel to a No. 57 gravel. This increase in shrinkage occurred even after reducing water and cementitious content of the blended aggregate mixtures because of the increased workability achieved with the addition of the No. 8 gravel.

Data generated in this study also indicate that Mississippi gravel can produce low shrinkage mixes without the need for aggregate gradation optimization. This is illustrated in Figure 47 by comparing shrinkage test results from mixes 4 and 16. The 224 day shrinkage was (-) 0.0337 percent for each of these mixtures even though mix 4 did not use aggregate gradation optimization and mix 16 used aggregate gradation optimization. Mix 16 was the best performing mixture for shrinkage of the two mixtures using the KU mix method. Four sizes of coarse limestone aggregate were used in this mixture in order to meet strict combined grading criteria. A 0.45 w/c ratio was used for mix 16 producing a 2.25 in. slump. On the other hand, mix 4 used Mississippi's typical concrete aggregates including a No. 57 gravel and concrete sand. Mix 4 provided the same shrinkage results as mix 16, a higher compressive strength than mix 16, and produced 3.25 inches more slump than mix 16.

Figure 47: Shrinkage VS Age - Mixes 4 and 16

From the data obtained in this study, aggregate gradation optimization can produce both low shrinkage and high shrinkage test results. Aggregate gradation optimization may also increase shrinkage as seen in the blended aggregate mixtures (mixes 12, 13, 27.1, and 28). Mixtures made with Mississippi gravel without aggregate gradation optimization can provide shrinkage results that are as good as mixtures made with crushed limestone and aggregate gradation optimization.

Chapter 8 - Statistical Analysis

A portion of the mixtures tested provided a balanced factorial design that allowed a statistical evaluation of the ultimate penetrability results and the ultimate shrinkage results. The experimental design (Table 25) for these mixtures included three factors including: gravel source, cement type and SCM type. The gravel source factor included two levels: Source 1 and Source 2. The cement type factor also included two levels: Type I portland cement and Type GU cement. Four levels of the SCMs factor were included: 25% Class C ash, 25% Class F ash, 50% GGBFS and none.

Mix ID	Gravel Source	Cement Type	SCM Type		
4		Type I	None		
5		Type I	25% C Ash		
6		Type I	25% F Ash		
7	C	Type I	50% GGBFS		
8	Source 1	Type GU	None		
9		Type GU	25% C Ash		
10		Type GU	25% F Ash		
11		Type GU	50% GGBFS		
19		Type I	None		
20.1		Type I	25% C Ash		
21		Type I	25% F Ash		
22	Sauraa 2	Type I	50% GGBFS		
23.1	Source 2	Type GU	None		
24		Type GU	25% C Ash		
25		Type GU	25% F Ash		
26		Type GU	50% GGBFS		

 Table 25: Experimental Design Including Factors and Levels
An analysis of variance (ANOVA) was conducted to determine the effect of gravel source, cement type and SCM type on the measured response variables (ultimate penetrability and ultimate shrinkage). Table 26 presents the results of the ANOVA for the 365 day penetrability test results. Results of this ANOVA show that all of the factors had a significant effect on the ultimate penetrability test results as well as most interactions.

Source	Degrees of Freedom	Mean Squares	F-Ratio	Probability Level	Significant Y/N*
A: Gravel Source	1	178,617	30.10	0.000	Y
B: Cement Type	1	31,186	6.27	0.024	Y
C: SCM Type	3	2,534,757	427.09	0.000	Y
AB	1	205,884	34.69	0.000	Y
AC	3	71,978	12.13	0.000	Y
BC	3	4,771	0.80	0.510	Ν
ABC	3	136,608	23.02	0.000	Y
Total	31				
* 0.05 level of significance					

 Table 26: Results of ANOVA for 365 Day Penetrability Test Results

One benefit of utilizing an ANOVA to evaluate test results is that the relative importance of the various factors within the data set can be ranked in order of importance by utilizing the Fratio statistics. With regards to the three main factors within the experimental design, the SCM type had the most impact on the resulting ultimate penetrability (highest F-ratio). The factor having the next highest impact on the ultimate penetrability was gravel source. The cement type had the least impact on ultimate penetrability results; however, the effect of cement type was shown significant.

Once an ANOVA has shown that a factor significantly impacts a response variable, another useful statistical tool is a Duncan's Multiple Range Test (DMRT). The DMRT is useful

by ranking the impact of the levels within a main factor and showing which levels are significantly different. Table 27 presents the results of the DMRT rankings for the ultimate penetrability test results. Within the rankings, means having different letter designations are significantly different. Likewise, means having the same letter are statistically similar.

Factor	Level	Mean Result (coulombs)	DMRT Ranking *
Gravel Source	Source 1	576.4	А
Graver Source	Source 2	725.8	В
Comont Type	Type I	617.0	А
Cement Type	Type GU	685.2	В
	25% F Ash	227.5	А
SCM	50% GGBFS	263.5	А
SCIVI	25% C Ash	674.5	В
	None	1,438.7	С
* Rankings with the sam	e letter are similar		

Table 27: Results of DMRT Rankings for 365 Days Penetrability Test Results

For durability, lower penetrability values are desired. Because there were only two levels for the gravel source and cement type factors and the ANOVA showed that these two factors were significant, it is not surprising that the two levels within these two factors were ranked differently by the DMRT. Figure 48 graphically illustrates the results of the average ultimate penetrability tests for each level of gravel source and cement type factors. As shown by the DMRT rankings and Figure 48, mixes utilizing Gravel Source 1 had lower penetrability results than mixes with Gravel Source 2 suggesting that mixtures prepared with Gravel Source 1 were more durable. The DMRT rankings and Figure 48 also show that mixes prepared with the Type I portland cement had lower penetrability values than those mixtures prepared with Type GU cement.

Figure 48: Means and DMRT Rankings for Gravel Source and Cement Type -Penetrability

Figure 49 shows that DMRT results graphically for the SCM factor. Based upon the DMRT rankings, the mixtures containing 25% F Ash and 50% GGBFS had similar penetrability values which were significantly lower than mixes with 25% C Ash and no SCM. The lower penetrability values suggest that mixture containing 25% F Ash and 50% GGBFS are more durable than mixes with Class C Fly Ash or no SCM. Another observation from Figure 49 is that the addition of 25% Class C Fly Ash did significantly lower penetrability compared to no SCM.

Figure 49: Means and DMRT Rankings for SCM Type - Penetrability

Table 28 presents the results of the ANOVA conducted on the ultimate shrinkage test results. Based upon Table 28, the gravel source and type SCM significantly affected ultimate shrinkage test results. Cement type did not significantly affect ultimate shrinkage. Based upon the F-ratios, the type of SCM had the most impact on ultimate shrinkage test results.

Source	Degrees of Freedom	Mean Squares	F-Ratio	Probability Level	Significant Y/N*
A: Gravel Source	1	2.210 E-04	5.79	0.022	Y
B: Cement Type	1	8.268 E-05	2.17	0.151	Ν
C: SCM Type	3	7.910 E-04	20.73	0.000	Y
AB	1	9.188 E-06	0.24	0.627	Ν
AC	3	7.952 E-05	2.08	0.122	Ν
BC	3	5.552 E-05	1.45	0.245	Ν
ABC	3	1.463 E-04	3.83	0.019	Y
Total	47				
* 0.05 level of significance					

Table 28: Results ANOVA for 224 Day Shrinkage Test Results

Similar to the analysis for the penetrability results, a DMRT was conducted for the factors found significant (gravel source and SCM type). Results of the DMRT rankings are presented in Table 29 and illustrated in Figure 50. Based upon the test method, higher percentages of shrinkage (i.e., less negative values) are considered to be better with respect to durability. Based upon Table 29 and Figure 50, mixtures containing Gravel Source 1 had lower percentages of shrinkage than mixtures containing Gravel Source 2. Also, mixtures containing 50% GGBFS performed better than mixtures containing the other three SCM types. Mixtures containing 25% Class F fly ash performed better than mixtures with Class C fly ash and mixtures with no SCM's. The addition of 25% percent Class C ash did not affect the shrinkage results when compared to no SCM.

Factor	Level	Mean Result (%)	DMRT Ranking *
Created Source	Source 1	-0.0325	А
Graver Source	Source 2	-0.0368	В
	50% GGBFS	-0.0248	А
SCM Matarial	25% F Ash	-0.0312	В
SCM Material	25 % C Ash	-0.0408	С
	None	-0.0418	С

Table 29: Results of DMRT Rankings for 224 Day Shrinkage Test Results

Figure 50: Means and DMRT Rankings for Gravel Source and SCM Type - Ultimate Shrinkage

Chapter 9 - Conclusions and Recommendations

Conclusions and recommendations are based on data sets generated from mixture proportions and materials used in this research. These data represent results from mixtures that use cementitious materials from one source including: one source of Type I portland cement, one source of Type GU cement (from a different supplier than the Type I portland cement), one source of Class C fly ash, one source of Class F fly ash and one source of GGBFS. Conclusions and recommendations may not be applicable for mixtures made with any other sources of materials or other mixture proportions than those in this study. Cementitious source-specific trends could be more critical than one class of materials verses another and this has not been investigated in this study.

Conclusions

The study showed that including SCMs in mixtures increases concrete's ability to resist chloride ion penetration and reduce the length change (shrinkage) of concrete materials.

Replacing cement with 25% Class C fly ash produces on average 94 percent of the shrinkage of mixtures with 100% Type I or 100% Type GU cement. Replacing cement with 25% Class F fly ash produces, on average, 78 percent of the shrinkage of mixtures with 100% Type I or 100% Type GU cement. Replacing cement with 50% GGBFS produces, on average, 58 percent of the shrinkage of mixtures with 100% Type I or Type GU cement.

Permeability / penetrability was significantly reduced in mixtures containing 25% Class C fly ash, 25% Class F fly ash, or 50% GGBFS compared to mixtures with 100% Type I or 100% Type GU cement. Chloride ion penetrability test results performed at 365 days indicate that all but one mixture (mix 27.1) containing these SCMs achieved very low chloride ion

penetrability and none of the mixtures with 100% Type I or 100% Type GU cement achieved very low chloride ion penetrability. Mixtures with 25% Class F fly ash or 50% GGBFS provided the lowest penetrability test results providing the most durable mixtures.

Mixtures incorporating aggregate gradation optimization to maximize aggregate content and reduce cement paste content were also evaluated in this study. Results varied from best performers to worst performers when evaluating its influence on shrinkage. Aggregate gradation optimization did not have as much influence on length change as the use of SCMs. Mixtures using common Mississippi concrete aggregates including No. 57 gravel and concrete sand performed as good as or better than mixtures with aggregate gradation optimization with respect to shrinkage. Aggregate gradation optimization may increase shrinkage as indicated with the blended aggregates category of mixtures.

Recommendations

MDOT Class BD concrete specifications at the time of this study allow for either 100% portland cement mixtures or mixtures with up to 50% GGBFS to a replace portland cement. MDOT BD specifications at the time of this study do not currently allow the use of either Class C or Class F fly ash. We recommend that MDOT re-evaluate the usefulness of fly ash in reducing shrinkage and reducing permeability of concrete for bridge decks.

MDOT Class BD specifications require aggregate gradation optimization to increase workability and reduce shrinkage. We recommend that MDOT consider that the natural grading of Mississippi gravel aggregates can produce mixtures with good workability and low shrinkage characteristics without aggregate gradation optimization.

Research Opportunities

- Shrinkage data for mix 1 and 16 indicate that aggregate absorption may have a significant influence on shrinkage. A research project should be conducted to determine if aggregate absorption has a significant impact on shrinkage.
- 2. This study provides data that indicate that supplementary cementitious materials have a significant influence in reducing shrinkage and permeability of concrete mixtures. A research project should be conducted to generate data to evaluate the influence of sources of cementitious materials on shrinkage and permeability.
- 3. Metakaolin, silica fume, and other pozzolans may also reduce shrinkage and permeability of concrete. These products are often available in bags that can be used in rural areas where concrete plants are limited to one silo for cementitious materials. A research project should be conducted to determine the usefulness of other supplemental cementitious materials in reducing shrinkage and permeability.

References

- Steven H. Kosmatka, Beatrix Kerkhoff, and William C. Panarese. "Design and Control of Concrete Mixtures," 14th Edition – Portland Cement Association.
- Sidney Mindess and J. Francis Young. "Concrete." Prentice-Hall, Inc., Englewood Cliffs, N.J. 1981
- David N. Richardson. "Aggregate Gradation Optimization-Literature Search." University of Missouri-Rolla. January 2005.
- Abdol R. Chini, Larry C. Muszynski, and Jamie Hicks. "Determination of Acceptance Permeability Characteristics for Performance-Related Specifications for Portland Cement Concrete." M.E. Rinker, Sr. School of Building Construction University of Florida. July 2003
- Kansas Department of Transportation Special Provision to the Standard Specifications 1990 Edition: Section 402: Low Cracking High Performance Concrete.
- KU Mix 2.1 BETA 1 Software. University of Kansas CEAE Department. Available at www.iri.ku.edu.
- Mississippi Department of Transportation Special Provision No. 907-804-9. Project BR-0022-02(049) / 104632301 – Neshoba County
- Mississippi Department of Transportation. 804 Specifications "Concrete Bridges and Structures."
- 9. Mississippi Department of Transportation. "Concrete Field Manual." August 2008.
- 10. ACI Committee 302, "Guide for Concrete Floor and Slab Construction. (ACI 302.1R-04)." American Concrete Institute, Farmington Hills, MI. pp 30-34.

- ACI Committee 209. "Factors Affecting Shrinkage and Creep of Hardened Concrete. (ACI 209.1R-3)." American Concrete Institute, Farmington Hills, MI. pp 5-7.
- ACI Committee 201. "Guide to Durable Concrete. (ACI 201.2R-08." American Concrete Institute, Farmington Hills, MI. pp 17 – 22.
- 13. W. Calvin McCall, Michael E. King, and Michael Whisonant. Concrete International "Effects of Aggregate Grading on Drying Shrinkage of Florida Concretes." March 2005
- 14. Karthik H. Obla and Haejin Kim. Concrete International "On Aggregate Grading Is good concrete performance dependent on meeting grading limits?" March 2008.

Appendix A

Raw Data of Concrete Mixtures

		MDOT	Shrinka	age and D	urability	- State S	tudy No. 216				Comm	nents / No	tes / Obser	vations
Customer:	MDOT		Project:	BCD 080	739				Lab #:	BCD				
MIX NUMBER	Mix	:1	Notes:		Type I -	KU Mix			Set #:	Mix 1	1			
Date:	3/17/2009		Mix Code:		f'c:	4,000 psi	Size(c.f.)	1.50	Factor:	0.06				
MIX DESIGN I	NFO	SSD mix 1	SSD mix	Adiusted lab	Actual lab						1			
Material	Vol. (c.f.)	cu. yd. Wt. (Ibs.)	lab batch Wt. (lbs.)	batch Wt. (Ibs.)	batch Wt. (Ibs.)	Mat	erial Source	SSD Specific Gravity	Agg. absorp tion	Agg. FM				
Cement 1:	2.75	540.00	30.00	30.00	30.00	Ce	ement Type I	3.15						
Cement 2:	0.00	ļ	0.00	0.00							Slump 1 1/2	2 to 3". 13	ml max for a	ir. 44 ml max
Fly Ash:	0.00		0.00	0.00							for water re	ducer. Wa	ater 64.5. Sei	nsor 1.
GGBFS:	0.00		0.00	0.00		L								
Sand 1:	5.58	915.90	50.88	52.49	52.49	Sa	nd Source 1	2.632	0.31%	2.96				
Coarse Aggregate 1:	1.44	238.00	13.22	13.23	13.23	NO 4 LIN	nestone Source 1	2.651	1.33%	7.86				
Coarse Aggregate 2:	6.44	1081.00	60.06	60.64	60.64	No 57 Lii	mestone Source 1	2.690	0.97%	6.84				
Coarse Aggregate 3:	2.63	438.00	24.33	24.66	24.66			2.673	1.37%	5.52				
Coarse Aggregate 4:	2.12	344.00	19.11	20.45	20.45	No 11 Lii	mestone Source 1	2.604	2.43%	3.26				
Air: 8.00%	2.16	0.00	0.00	0.00	0.00									
Water:	3.89	243.00	13.50	9.63	9.63			1.00				Strength	Test Result	s
"+-Air: 1.00%												AGE	psi	Avg. psi
											Date	4	4x8 CYLINDE	RS
Total:	27.00	3799.90	211.11	211.11							03/18/09	1 days	2260	2260
UW w/o Air:		152.98	152.98	152.98				Aggre	egate Moist	ures	00/10/00	1 days		2200
				DUITION					Free H ₂ O	Batch free	03/24/09	7 days	4370	4355
Turne		, A		RMATION				0	Content	1120 (103.)		7 days	4340	
Type	oz /cwt	oz /cy	mi/cy	batch mi	actual mi	!	rand / Name	Sand:	3.16%	1.60	03/31/09	14 days	4970	4980
	1.18	0.4	188.4	10.5	10.5	+			0.09%	0.01		14 days	4990	
VIC Type A	4.90	20.0	792.1	44.0	44.0	<u>+</u>			0.99%	0.39	04/14/00	20 uays	5710	5420
						+			7 16%	0.33	04/14/03	20 uays	5250	. 3420
		+		<u> </u>		+		Water	Added/With	held		56 days	4570	
		+				+		+/- h2o	Added	W/held	05/12/09	56 days	5810	5190
F	LASTIC TES	T RESULT	S			OTHER	INFO							
Batch Time	11:56 AM	%	Air	7.00	Des.	. w/c	0.450				1			
Sample Time	12:11 PM	Unit We	ight (pcf)	144.24	Act.	w/c	0.450							
Slump, in.	3.25	Yi	eld	1.46	Des.L	Jn.Wt.	140.74							
Mix Temp.	74.0	Initial s	et, min.	NA	Fine/C	Coarse	0.72			ļ	Technic	ian who		
Air Temp.	76.0	Relativ	/e Yield	0.976	Bag F	actor	5.7			l.	conduct	ed tests:		
Material	Design	Buckets	Weight	Vol		_	Air Un. Wt	Bucket Full	ļ		Workability	/ Coarsene	ISS NDCT	,
Cementitious 1:	30.00	1	3 0.00	04 5000/	L L	.ow Range	7.00% 142.16	5 43.30	1	CF Actual	59.1	W	Ithin MDOT L	lmits

Material	Design	Buckets	Weight	Vol		Air	Un. Wt.	Bucket Full	Workability / Coarseness			
Cementitious 1:	30.00	1	30.00	24 509%	Low Range	7.00%	142.16	43.30	CF Actual	59.1	Within MDOT Limits	
Cementitious 2:	0.00	1	0.00	24.390 %	Design Un. Wt	8.00%	140.74	42.94	AWF upper limit	40.0	Positive	
Sand #1:	52.49	2	26.24	30.359%	High Range	9.00%	139.34	42.60	AWF lower limit	32.0	Positive	
Coarse Aggregate 1:	13.23	1	13.23	7.889%	Bucket Weight	7.76			AWF	34.8	Within MDOT Limits	
Coarse Aggregate 2:	60.64	2	30.32	35.831%	Bucket Volume	0.250			CF upper limit	73.4	Positive	
Coarse Aggregate 3:	24.66	1	24.66	14.518%	Bucket Full	43.82			CF lower limit	48.6	Positive	
Coarse Aggregate 4:	20.45	1	20.45	11.402%	Theoretical Air	5.71			WF Actual	35.5		

MDOT Shrinkage and Durability - State Study No. 216	Comments / Notes / Observations
Customer: MDOT Project: BCD 080739 Lab #: BCD	
MIX NUMBER Mix 2.1 Notes: Type I - MDOT Class AA Set #: Mix 2.1	
Date: 5/28/2009 Mix Code: fc: 4,000 psi Size(c.f.): 1.50 Factor: 0.06	
MIX DESIGN INFO SUP WILL AUGUSTED ACID ACID ACID ACID ACID ACID ACID ACI	
Material Vol. (c.f.) (Jhs) With the state of	
Cement 1: 2.99 588.00 32.67 32.67 Cement Type I 3.15	
Cement 2: 0.00 0.00 0.00 Simo	nn 2 1/4 to 3 3/4 Air 5 1/2% to 6 1/2%
Fly Ash: 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	er 67. Slump 5.75. Slump after 7 minutes
GGBFS: 0.00 0.00 0.00 4.0. S	Sensor 3.
Sand 1: 6.46 1060.82 58.93 61.13 61.13 Sand Source 1 2.632 0.31% 2.96	
Coarse Aggregate 1: 12.16 1919.00 106.61 107.31 107.31 No 57 Gravel Source 1 2.529 2.29% 7.14	
Coarse Aggregate 2: 0.00 0.00 0.00 0.00 1.000 1.00% 1.00%	
Coarse Aggregate 3: 0.00 0.00 0.00 0.00 0.00 1.00% 1.00	
Coarse Aggregate 4: 0.00 0.00 0.00 0.00 0.00 1.00% 1.00	
Air: 6.00% 1.62 0.00 0.00 0.00 0.00	
Water: 3.77 235.20 13.07 10.17 10.17 1.00	Strength Test Results
"+-Air: 0.50%	AGE psi Avg. psi
	Date 4x8 CYLINDERS
Total: 27.00 3803.02 211.28 211.28	1 days 2720 0045
UW w/o Air: 149.84 149.84 149.84 05/2	29/09 1 days 2510 2615
Free H ₂ O Batch free	7 days 4840 4920
ADMIX INFORMATION Content H ₂ O (lbs.) 06/C	04/09 7 days 5000 4920
Type oz /cwt oz /cy ml /cy batch ml actual ml Brand / Name Sand: 3.74% 2.20	14 days 5660 5500
Air 0.52 3.1 90.4 5.0 5.0 CA 1 0.67% 0.70 06/1	11/09 14 days 5340 5500
WR Type A 4.00 23.5 695.6 38.6 38.6 CA 2 0.00% 0.00	28 days 5460
CA 3 0.00% 0.00	28 days 6060 5757
CA 4 0.00% 0.00 06/2	25/09 28 days 5750
Water Added/Withheld	56 days 6390 6355
+/- h2o Added W/held 07/2	23/09 56 days 6320
PLASTIC TEST RESULTS OTHER INFO	
Batch Time 1:41 PM % Air 6.75 Des. w/c 0.400	
Sample Time 1:49 PM Unit Weight (pcf) 141.88 Act. w/c 0.400	
Yield Yield	
Siump, m. 5./5 1.49 Des.Un.Wt. 140.85	
Mix Temp. 13.4 Initial set, min. NA Fine/Coarse 0.55	echnician who
Air remp. 72.4 Kelative Yield 0.993 Bag Factor 6.3 Col	onauctéa tests:

Material	Design	Buckets	Weight	Paste Vol		Air	Un. Wt.	Bucket Full	V	Vorkability	/ Coarseness
Cementitious 1:	32.67	1	32.67	25.040%	Low Range	5.50%	141.56	43.15	CF Actual	75.2	#NUM!
Cementitious 2:	0.00	1	0.00	25.040%	Design Un. Wt	6.00%	140.85	42.97	AWF upper limit	#NUM!	Negative Under Radical
Sand #1:	61.13	2	30.57	35.600%	High Range	6.50%	140.15	42.80	AWF lower limit	#NUM!	Negative Under Radical
Coarse Aggregate 1:	107.31	2	53.65	64.400%	Bucket Weight	7.76			AWF	30.4	#NUM!
Coarse Aggregate 2:	0.00	1	0.00	0.000%	Bucket Volume	0.250			CF upper limit	#NUM!	Negative Under Radical
Coarse Aggregate 3:	0.00	1	0.00	0.000%	Bucket Full	43.23			CF lower limit	#NUM!	Negative Under Radical
Coarse Aggregate 4:	0.00	1	0.00	0.000%	Theoretical Air	5.31			WF Actual	29.8	

		MDOT	Shrinka	age and D	urability	- State Study No. 216				Comm	ents / Note	s / Observ	/ations
Customer:	MDOT		Project:	BCD 080	739			Lab #:	BCD				
MIX NUMBER	Mix	3	Notes:	Type I - 2	25% C Ash	- MDOT Class AA		Set #:	Mix 3	1			
Date:	3/24/2008		Mix Code:		f'c:	4,000 psi Size(c.f.):	1.50	Factor:	0.06				
MIX DESIGN I	NFO	cu. yd. Wt.	lab batch	batch Wt.	batch Wt.		SSD Specific	Agg. absorp					
Material	Vol. (c.f.)	(lbs)	Wt. (lbs.)	(lbs.)	(lbs.)	Material Source	Gravity	tion	Agg. FM				
Cement 1:	2.24	441.00	24.50	24.50	24.50	Cement Type I	3.15						
Cement 2:	0.00	147.00	0.00	0.00	9 17	Type C Ely Ash	2.64						
CORES:	0.09	147.00	0.17	0.17	0.17	Type C Fly Ash	2.04			Slump 2 1/4	to 3 3/4.48	mi max for	r water
Sand 1:	6.31	1037.09	57 62	59.47	59 47	Sand Source 1	2 632	0.31%	2.96	reducer. We	2101 00.0. 001	1301 1.	
Coarse Aggregate 1:	12.16	1919.00	106.61	108.38	108.38	No 57 Gravel Source 1	2.529	2.29%	7.14				
Coarse Aggregate 2:	0.00	0.00	0.00	0.00	0.00		1.000	1.00%	1.00	1			
Coarse Aggregate 3:	0.00	0.00	0.00	0.00	0.00		1.000	1.00%	1.00				
				0 00			·						
Coarse Aggregate 4:	0.00	0.00	0.00	0.00	0.00		1.000	1.00%	1.00				
AII: 6.00%	3.77	235.20	13.07	0.00	0.00		1.00				Strongth To		2
". Air: 0 50%	5.11	200.20	13.07	3.44	3.44		1.00					nei	Ava nei
+-AII. 0.50%											AGE	psi	Avg. psi
										Date	4x	3 CYLINDE	RS
Total:	27.00	3779.29	209.96	209.96							1 days	1890	1910
UW w/o Air:		148.91	148.91	148.91			Aggre	gate Moisti	ures	03/25/09	1 days	1930	1910
								Free H ₂ O	Batch free		7 days	4240	4425
		A	DMIX INFO	RMATION				Content	H ₂ O (Ibs.)	03/31/09	7 days	4610	
Туре	oz /cwt	oz /cy	ml /cy	batch ml	actual ml	Brand / Name	Sand:	3.23%	1.86		14 days	3940	4515
Air	1.04	6.1	180.9	10.0	10.0		CA 1	1.70%	1.77	04/07/09	14 days	5090	
WR Type A	3.62	21.3	629.5	35.0	35.0		CA 2	0.00%	0.00		28 days	4770	5007
								0.00%	0.00	0.4/04/00	28 days	5480	5207
							UA 4	0.00%	0.00	04/21/09	28 days	5370	
				}			+/- h20	Added	W/held	05/19/09	56 days	5890	6080
F	LASTIC TES	TRESULT	S			OTHER INFO	17 1120	710000	W/Hold	00/10/00	oo aayo	0000	
Batch Time	12:59 PM	%	Air	6.50	Des.	w/c 0.400							
Sample Time	1:07 PM	Unit Wei	ight (pcf)	142.48	Act.	w/c 0.400							
Slump, in,	2.25	Y IE	eia	1.47	Des.U	n.Wt. 139.97							
Mix Temp.	75.6	Initial s	et, min.	NA	Fine/C	oarse 0.54				Technic	ian who		
Air Temp.	75.7	Relativ	e Yield	0.982	Bag F	actor 6.3				conduct	ed tests:		
				-		•	-		-				

						÷.	-	conducted tests:			icu icata.
Material	Design	Buckets	Weight	Paste Vol	Air Un. Wt. Bucket Full Workability / Coarseness						
Cementitious 1:	24.50	1	24.50	25 575%	Low Range	5.50%	140.68	42.93	CF Actual	75.3	#NUM!
Cementitious 2:	8.17	1	8.17	23.37376	Design Un. Wt	6.00%	139.97	42.75	AWF upper limit	#NUM!	Negative Under Radical
Sand #1:	59.47	2	29.74	35.083%	High Range	6.50%	139.28	42.58	AWF lower limit	#NUM!	Negative Under Radical
Coarse Aggregate 1:	108.38	2	54.19	64.917%	Bucket Weight	7.76			AWF	30.0	#NUM!
Coarse Aggregate 2:	0.00	1	0.00	0.000%	Bucket Volume	0.250			CF upper limit	#NUM!	Negative Under Radical
Coarse Aggregate 3:	0.00	1	0.00	0.000%	Bucket Full	43.38			CF lower limit	#NUM!	Negative Under Radical
Coarse Aggregate 4:	0.00	1	0.00	0.000%	Theoretical Air	4.32			WF Actual	29.3	

		MDOT	Shrinka	age and D	urability	- State Study	No. 216				Comm	ents / Note	s / Observ	vations
Customer:	MDOT		Project:	BCD 080	739				Lab #:	BCD				
MIX NUMBER	Mix	4	Notes:		Тур	e I			Set #:	Mix 4	1			
Date:	3/19/2009		Mix Code:		f'c:	4,000 psi	Size(c.f.):	1.50	Factor:	0.06				
MIX DESIGN I	NFO	cu. vd. Wt.	lab batch	batch Wt.	batch Wt.		_	SSD Specific	Agg. absorp					
Material	Vol. (c.f.)	(lbs)	Wt. (lbs.)	(lbs.)	(lbs.)	Material S	Source	Gravity	tion	Agg. FM				
Cement 1:	2.63	517.00	28.72	28.72	28.72	Cement	Type I	3.15						
Cement 2:	0.00		0.00	0.00										
	0.00		0.00	0.00							Water 65.9.	Sensor 3.		
GGDF3. Sand 1:	6.61	1086.03	60.34	62.28	62.28	Sand So	urce 1	2 632	0.31%	2.96				
Coarse Aggregate 1:	12 16	1919.00	106 61	107.48	107 48	No 57 Gravel	Source 1	2.002	2 29%	7 14				
Coarco Aggrogato 2:	0.00	0.00	0.00	0.00	0.00			1 000	1.00%	1.00				
Coarse Aygregate 2.	0.00	0.00	0.00	0.00	0.00			1.000	1.00 %	1.00				
Coarse Aggregate 3:	0.00	0.00	0.00	0.00	0.00			1.000	1.00%	1.00				
0	0.00	0.00	0.00	0.00	0.00			4 000	4.000/	4.00				
Coarse Aggregate 4:	0.00	0.00	0.00	0.00	0.00			1.000	1.00%	1.00				
Water:	3.02	248.16	13 79	0.00	10.00			1.00				Strongth To	et Roculte	
". Air: 0.50%	3.30	240.10	13.73	10.97	10.37			1.00					st Result	
+-AII. 0.50%												AGE	psi	Avg. psi
											Date	4x	B CYLINDE	RS
Total:	27.00	3770.19	209.46	209.46								1 days	2300	2160
UW w/o Air:		148.55	148.55	148.55				Aggre	gate Moist	ures	03/30/09	1 days	2020	2100
			-	-					Free H ₂ O	Batch free		7 days	4530	4515
		AI	DMIX INFO	RMATION					Content	H ₂ O (lbs.)	03/26/09	7 days	4500	4010
Туре	oz /cwt	oz /cy	ml /cy	batch ml	actual ml	Brand / I	Name	Sand:	3.24%	1.95		14 days	4870	4860
Air	0.52	2.7	79.5	4.4	4.4			CA 1	0.83%	0.87	04/02/09	14 days	4850	-1000
WR Type A	4.00	20.7	611.6	34.0	34.0			CA 2	0.00%	0.00		28 days	5690	
		.						CA 3	0.00%	0.00		28 days	5590	5603
								CA 4	0.00%	0.00	04/16/09	28 days	5530	
		ļ						Water	Added/With	heid		56 days	5850	5855
								+/- h2o	Added	W/held	05/14/09	56 days	5860	
P Rotch Timo			3 Air	6.05	Doc		0.490							
Sample Time	1.34 F W	70 Linit Wo	ight (ncf)	0.20	Des.	w/c	0.480							
Sample Time	1.44 F 1VI	Unit We	igin (pci)	142.70	ACI.	w/c	0.400						_	_
		Yie	eld											
Slump, in.	5.50			1.47	Des.U	n.Wt.	139.64							
Mix Temp.	74.7	Initial s	et, min.	NA	Fine/C	oarse	0.57				Technic	ian who		
Air Temp.	73.6	Relativ	e Yield	0.978	Bag F	actor	5.5				conduct	ed tests:		
· · ·				•	Ű									

Material	Design	Buckets	Weight	Paste Vol		Air	Un. Wt.	Bucket Full	1	Norkability	/ Coarseness
Cementitious 1:	28.72	1	28.72	24 4710/	Low Range	5.50%	140.34	42.84	CF Actual	75.0	#NUM!
Cementitious 2:	0.00	1	0.00	24.47170	Design Un. Wt	6.00%	139.64	42.67	AWF upper limit	#NUM!	Negative Under Radical
Sand #1:	62.28	1	62.28	36.140%	High Range	6.50%	138.94	42.50	AWF lower limit	#NUM!	Negative Under Radical
Coarse Aggregate 1:	107.48	2	53.74	63.860%	Bucket Weight	7.76			AWF	29.0	#NUM!
Coarse Aggregate 2:	0.00	2	0.00	0.000%	Bucket Volume	0.250			CF upper limit	#NUM!	Negative Under Radical
Coarse Aggregate 3:	0.00	1	0.00	0.000%	Bucket Full	43.45			CF lower limit	#NUM!	Negative Under Radical
Coarse Aggregate 4:	0.00	1	0.00	0.000%	Theoretical Air	3.90			WF Actual	30.2	

		MDOT	Shrinka	age and D	urability	- State Stu	udy No. 216				Comm	ents / Note	s / Observ	vations
Customer:	MDOT		Project:	BCD 080	739				Lab #:	BCD				
MIX NUMBER	Mix	5	Notes:		Type I - 25	% C Ash			Set #:	Mix 5				
Date:	3/24/2009		Mix Code:		f'c:	4,000 psi	Size(c.f.):	1.50	Factor:	0.06				
MIX DESIGN I	NFO	cu vd Wt	Jab batch	hatch Wt	hatch Wt			SSD Specific	Agg. absorp					
Material	Vol. (c.f.)	(lbs)	Wt. (lbs.)	(lbs.)	(lbs.)	Mate	rial Source	Gravity	tion	Agg. FM				
Cement 1:	1.94	380.44	21.14	21.14	21.14	Cem	ent Type I	3.15						
Cement 2:	0.00		0.00	0.00										
Fly Ash:	0.77	126.81	7.04	7.04	7.04	Туре	C Fly Ash	2.64	<u> </u>		Report Slur	np. 41.5 ml	max for wa	ter reducer.
GGBFS:	0.00	ļ	0.00	0.00							Water 64.0.	Sensor 3.		
Sand 1:	6.61	1086.03	60.33	62.28	62.28	Sanc	d Source 1	2.632	0.31%	2.96				
Coarse Aggregate 1:	12.16	1919.00	106.61	108.38	108.38	No 57 Gi	ravel Source 1	2.529	2.29%	7.14				
Coarse Aggregate 2:	0.00	0.00	0.00	0.00	0.00			1.000	1.00%	1.00				
Coarse Aggregate 3:	0.00	0.00	0.00	0.00	0.00			1.000	1.00%	1.00				
				0.00										
Coarse Aggregate 4:	0.00	0.00	0.00	0.00	0.00			1.000	1.00%	1.00				
Air: 6.00%	1.62	0.00	0.00	0.00	0.00									
Water:	3.90	243.48	13.53	9.81	9.81			1.00				Strength To	est Result	s
"+-Air: 0.50%												AGE	psi	Avg. psi
											Date	4x	8 CYLINDE	RS
Total:	27.00	3755.76	208.65	208.65				-				1 days	1590	1550
UW w/o Air:		147.98	147.98	147.98				Aggre	egate Moistu	ures	03/25/09	1 days	1510	1550
									Free H ₂ O	Batch free		7 days	3860	3755
		A	DMIX INFO	ORMATION					Content	H ₂ O (Ibs.)	03/31/09	7 days	3650	0100
Туре	oz /cwt	oz /cy	ml /cy	batch ml	actual ml	Bra	nd / Name	Sand:	3.23%	1.94		14 days	4500	4435
Air	0.53	2.7	79.5	4.4	4.4			CA 1	1.70%	1.77	04/07/09	14 days	4370	4400
WR Type A	4.00	20.3	600.1	33.3	33.3	j		CA 2	1.00%	0.00		28 days	4920	
					<u> </u>			CA 3	1.00%	0.00		28 days	5440	5080
		<u> </u>]		CA 4	1.00%	0.00	04/21/09	28 days	4880	
								Water	Added/With	held		56 days	5850	5745
								+/- h2o	Added	W/held	05/19/09	56 days	5640	0140
F	PLASTIC TES	T RESULT	S			OTHER IN	IFO							
Batch Time	8:51 AM	%	Air	6.25	Des.	w/c	0.480							
Sample Time	8:59 AM	Unit We	ight (pcf)	141.40	Act.	w/c	0.480							
			- 1-1											
Slump in	6 75	YI	eia	1 / 8	Dec I	n Wt	130 10							
Miy Tomp	72.9	Initial a	ot min	1.40 NA	Des.U		0.57				Task ·	law web a	_	_
Viix Temp.	73.0	Polotiv	et, IIIII. vo Viold	0.084	Fine/C	oarse	0.07				recnnic	an who		
All remp.	10.0	Reidliv		0.304	раў г	ลบเป	ე.4				conduct	eu tests:		
Matorial	Docian	Buckota	Woight	Vol	1		Air Un Wt	Rucket Full	1		Workability	Coarsones		

Material	Design	Buckets	Weight	Vol		Air	Un. Wt.	Bucket Full	V	Vorkability	/ Coarseness
Cementitious 1:	21.14	1	21.14	24 4710/	Low Range	5.50%	139.80	42.71	CF Actual	75.0	#NUM!
Cementitious 2:	7.04	1	7.04	24.47170	Design Un. Wt	6.00%	139.10	42.54	AWF upper limit	#NUM!	Negative Under Radical
Sand #1:	62.28	2	31.14	36.140%	High Range	6.50%	138.41	42.36	AWF lower limit	#NUM!	Negative Under Radical
Coarse Aggregate 1:	108.38	2	54.19	63.860%	Bucket Weight	7.76			AWF	28.7	#NUM!
Coarse Aggregate 2:	0.00	2	0.00	0.000%	Bucket Volume	0.250			CF upper limit	#NUM!	Negative Under Radical
Coarse Aggregate 3:	0.00	1	0.00	0.000%	Bucket Full	43.11			CF lower limit	#NUM!	Negative Under Radical
Coarse Aggregate 4:	0.00	1	0.00	0.000%	Theoretical Air	4.45			WF Actual	30.2	

		MDOT	Shrinka	age and D	urability	- State S	tudy No. 216				Comm	ents / Note	s / Obser	vations
Customer:	MDOT		Project:	BCD 080	739				Lab #:	BCD				
MIX NUMBER	Mix	6	Notes:		Type I - 25	i% F Ash			Set #:	Mix 6				
Date:	3/26/2009		Mix Code:		f'c:	4,000 psi	Size(c.f.):	1.50	Factor:	0.06				
MIX DESIGN I	NFO		lab batch	hatch Wt	hatch Wt			SSD Specific	Agg. absorp					
Material	Vol. (c.f.)	Wt (lbs)	Wt. (lbs.)	(lbs.)	(lbs.)	Mat	erial Source	Gravity	tion	Agg. FM				
Cement 1:	1.90	372.68	20.70	20.70	20.70	Ce	ment Type I	3.15						
Cement 2:	0.00		0.00	0.00				[
Fly Ash:	0.89	124.23	6.90	6.90	6.90	Тур	e F Fly Ash	2.24		ļ	Report Slur	np. 41.5 ml	max for wa	ter reducer.
GGBFS:	0.00		0.00	0.00							Water 63.9.	Sensor 3.		
Sand 1:	6.61	1086.02	60.33	62.55	62.55	Sar	nd Source 1	2.632	0.31%	2.96				
Coarse Aggregate 1:	12.16	1919.00	106.61	108.11	108.11	NO 57 (Gravel Source 1	2.529	2.29%	7.14				
Coarse Aggregate 2:	0.00	0.00	0.00	0.00	0.00	L		1.000	1.00%	1.00				
Coarse Aggregate 3:	0.00	0.00	0.00	0.00	0.00			1.000	1.00%	1.00				
Coarse Aggregate 4:	0.00	0.00	0.00	0.00	0.00			1.000	1.00%	1.00				
Air: 6.00%	1.62	0.00	0.00	0.00	0.00									
Water:	3.82	238.52	13.25	9.54	9.54	[1.00	[:	Strength To	est Result	s
"+-Air: 0.50%												AGE	psi	Avg. psi
											Date	4x	8 CYLINDE	RS
Total:	27.00	3740.45	207.80	207.80								1 days	1490	1560
UW w/o Air:		147.38	147.38	147.38				Aggre	gate Moist	ures	03/27/09	1 days	1630	1500
				•					Free H ₂ O	Batch free		7 days	3130	3140
		Α	DMIX INFO	ORMATION					Content	H ₂ O (lbs.)	04/02/09	7 days	3150	0140
Туре	oz /cwt	oz /cy	ml /cy	batch ml	actual ml	Br	and / Name	Sand:	3.68%	2.21		14 days	3610	3660
Air	1.00	5.0	147.0	8.2	8.2			CA 1	1.44%	1.50	04/09/09	14 days	3710	0000
WR Type A	4.00	19.9	587.8	32.7	32.7	ļ		CA 2	1.00%	0.00		28 days	4260	
						ļ		CA 3	1.00%	0.00		28 days	4290	4333
			<u> </u>	 				CA 4	1.00%	0.00	04/23/09	28 days	4450	
		 	 	 				Water	Added/With	nneid		56 days	5540	5405
								+/- h2o	Added	W/held	05/21/09	56 days	5270	
Potoh Timo	LASTIC TES		5 Air	C 00	Dee		0.490							
Sample Time	10:36 AM	/0 L Init W/o	ight (ncf)	140.60	Des. Act	. w/c	0.400			!				
Sample Time	10.30 AW	Offic we	igni (pci)	140.00	7.01.	w/c	0.400							
		Yi	eld											
Slump, in.	5.50		olu -	1.48	Des.U	Jn.Wt.	138.54							
Mix Temp.	73.4	Initial s	et, min.	NA	Fine/C	Coarse	0.57				Technic	ian who	[
Air Temp.	73.2	Relativ	e Yield	0.985	Bag F	actor	5.3			h	conduct	ed tests:		
					-									
Material	Design	Buckets	Weight	Vol			Air Un. Wt.	Bucket Full			Workability /	Coarsenes	s	
Cementitious 1:	20.70	1	20.70	04.47404	L	ow Range	5.50% 139.23	42.58		CF Actual	75.0		#NUM!	

Material	Design	Buckets	Weight	Vol		Air	Un. Wt.	Bucket Full	v	/orkability	/ Coarseness
Cementitious 1:	20.70	1	20.70	24 4710/	Low Range	5.50%	139.23	42.58	CF Actual	75.0	#NUM!
Cementitious 2:	6.90	1	6.90	24.47170	Design Un. Wt	6.00%	138.54	42.40	AWF upper limit	#NUM!	Negative Under Radical
Sand #1:	62.55	2	31.27	36.140%	High Range	6.50%	137.85	42.23	AWF lower limit	#NUM!	Negative Under Radical
Coarse Aggregate 1:	108.11	2	54.06	63.860%	Bucket Weight	7.77			AWF	28.4	#NUM!
Coarse Aggregate 2:	0.00	2	0.00	0.000%	Bucket Volume	0.250			CF upper limit	#NUM!	Negative Under Radical
Coarse Aggregate 3:	0.00	1	0.00	0.000%	Bucket Full	42.92			CF lower limit	#NUM!	Negative Under Radical
Coarse Aggregate 4:	0.00	1	0.00	0.000%	Theoretical Air	4.60			WF Actual	30.2	

Customer IDOT Project: ECD 080739 Lab #: BCD Figure 1400 MX NUMBER MX DBSION NFO Matched Matched Cement 1 V0 (c1), Wr (cs), Wr (cs			MDOT	Shrinka	age and D	urability	- State S	tudy No.	216				Comm	ents / Note	es / Observ	vations
MIX NUMBER Mix 7 Notes Type 1 - 50% GGPFS Set #: M:r M:r MX DESIGN INFO 300 mix 300 mix 300 mix 1.00 Streict.): 1.50 Factor: 0.00 0.00 0.00 Streict.): 1.50 Factor: 0.00 <th>Customer:</th> <th>MDOT</th> <th></th> <th>Project:</th> <th>BCD 080</th> <th>739</th> <th></th> <th></th> <th></th> <th></th> <th>Lab #:</th> <th>BCD</th> <th></th> <th></th> <th></th> <th></th>	Customer:	MDOT		Project:	BCD 080	739					Lab #:	BCD				
Date MAC Code MC Code 4.000 psi Size(.1) Size (.1) 6 Factor 0.00 MM DESIGN INFO Souther Size Specific/light (.1) Size Specific/light (.2) Size S	MIX NUMBER	Mix	7	Notes:		Гуре I - 50%	% GGBFS				Set #:	Mix 7	1			
MX DESION INFO Seture is a point with a part of the part of t	Date:	3/26/2009		Mix Code:		f'c:	4,000 psi	5	Size(c.f.):	1.50	Factor:	0.06				
Material Void (c1) var meal meal Material Source Gravity lion Aug PM Cement I 1.20 283.35 14.11 14.11 Gement Type 3.15. au	MIX DESIGN I	NFO	cu. vd.	lab batch	batch Wt.	batch Wt.				SSD Specific	Agg. absorp					
Cament 1: 1.20 253.35 14.11 14.11 14.11 Genent Type I 3.15 Image: Type I 3.15 Type I 3.	Material	Vol. (c.f.)	Wt (lbs)	Wt. (lbs.)	(lbs.)	(lbs.)	Mat	erial Sour	ce	Gravity	tion	Agg. FM				
Cement 2: 0.00	Cement 1:	1.29	253.95	14.11	14.11	14.11	Ce	ment Type	l	3.15						
Fly Ash: 0.00	Cement 2:	0.00		0.00	0.00											
GCBFS 1.41 26.38 1.4.11 14.11 14.11 GCBFS 2.89 Net F3.5. Sensor 4. Sand1 6.61 1066.05 60.34 62.25 62.55 62.56 Sand Source 1 2.529 7.14 Coarse Aggregate 1 12.16 191.00 106.01 108.11 108.11 No 57 Gravel Source 1 2.529 2.29% 7.14 Coarse Aggregate 3 0.00 0.00 0.00 0.00 1.000 1.00% 1.00 Coarse Aggregate 3 0.00 0.00 0.00 0.00 0.00 1.000 1.00% 1.00 Carse Aggregate 3 0.00 0.00 0.00 0.00 0.00 1.000 1.00% 1.00 Water 3.3.1 1.52 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.000 1.00% 1.000 1.00% 1.000 1.00% 1.000 1.00% 1.00% 1.00% 1.00% 1.00% 1.00% 1.00% 1.00% 1.00% 1.00% 1.00% 1.00% 1.00% 1.00% 1.00% 1.0	Fly Ash:	0.00	ļ	0.00	0.00		ļ						Report Slur	np. 41.5 ml	max for wa	ter reducer.
Sand 1 C6.81 1006, U5 60.34 62.55 Sand Source 1 2.632 0.01% 2.96 Coarse Aggregate 1 10.16.61 106.61 106.61 106.61 106.71 100.01 1.000 1.000 1.000 Coarse Aggregate 3 0.00 0.00 0.00 0.00 0.00 1.000 1.000 1.000 1.000 Coarse Aggregate 4 0.00 0.00 0.00 0.00 0.00 1.000 1.000 1.000 Arr. 5 0.00 0.00 0.00 0.00 0.00 0.00 1.000 1.000 1.000 Arr. 5 0.50% 6.20 0.00 0.00 0.00 0.00 1.000 1.000 1.000 1.000 Arr. 6 0.50% 0.00 0.00 0.00 0.00 0.00 0.00 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.027/00 1.000 0.027/00<	GGBFS:	1.41	253.95	14.11	14.11	14.11	ļ	GGBFS	. <u>.</u>	2.89			Water 63.5.	Sensor 4.		
Coarse Aggregate 1 12.16 19300 106.11 No 5* Grave Source 1 2.39 2.19% 7.14 Coarse Aggregate 2 0.00 0.00 0.00 0.00 1.000 1.00% 1.00 Coarse Aggregate 3 0.00 0.00 0.00 0.00 1.000 1.00% 1.00 Coarse Aggregate 3 0.00 0.00 0.00 0.00 1.000 1.00% 1.00 Arr 6.00% 1.62 0.00 0.00 0.00 0.00 1.000 1.00% 1.00 *+Air 0.50%	Sand 1:	6.61	1086.05	60.34	62.55	62.55	Sai	nd Source	1	2.632	0.31%	2.96				
Coarse Aggregate 2 0.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 Coarse Aggregate 3 0.00 0.00 0.00 0.00 0.00 1.000 1.00% 1.00 Coarse Aggregate 4 0.00 0.00 0.00 0.00 1.000 1.00% 1.00 Air 5 6.005 1.62 0.00 0.00 0.00 1.00 1.00% 1.00 "*-Air 0.50% -	Coarse Aggregate 1:	12.16	1919.00	106.61	108.11	108.11	NO 57 0	sravel Sou	rce 1	2.529	2.29%	7.14				
Coarse Aggregate 3: 0.00 0.00 0.00 0.00 0.00 0.00 1.000 1.00% 1.00 Coarse Aggregate 4: 0.00 0.00 0.00 0.00 0.00 1.00% 1.00% 1.00% Arr 6.00% 1.62 0.00 0.00 0.00 0.00 1.00% 1.00% 1.00 Water 3.31 243.79 1243.79 1.00 9.83 9.83 1.00 1.00% 1.00 1.00% 1.00% 1.00 4.00 2.00 AGE psi Avg. psi "+-Air 0.50% I 1.00 1.00%	Coarse Aggregate 2:	0.00	0.00	0.00	0.00	0.00				1.000	1.00%	1.00				
Coarse Aggregate 4: Air 0.00 0.00 0.00 0.00 0.00 1.000 <td>Coarse Aggregate 3:</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td>0.00</td> <td></td> <td></td> <td></td> <td>1.000</td> <td>1.00%</td> <td>1.00</td> <td></td> <td></td> <td></td> <td></td>	Coarse Aggregate 3:	0.00	0.00	0.00	0.00	0.00				1.000	1.00%	1.00				
Coarse Aggregate 4: 0.00 0.00 0.00 0.00 0.00 1.000					0.00											
Arr: 6.00% 1.62 0.00	Coarse Aggregate 4:	0.00	0.00	0.00	0.00	0.00				1.000	1.00%	1.00				
Water 3.91 243.79 13.54 9.83 9.83 1.00 Strength Test Results "+-Air: 0.50% 0.50% 0 <td< td=""><td>Air: 6.00%</td><td>1.62</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	Air: 6.00%	1.62	0.00	0.00	0.00	0.00										
"*-Air: 0.50% AGE psi Age Age Tage Age Tage Age Tage Age Tage Age Tage	vvater:	3.91	243.79	13.54	9.83	9.83	 			1.00				Strength I	est Result	s
Image: Contract in the state of th	"+-Air: 0.50%													AGE	psi	Avg. psi
Total: 27.00 3756.74 208.71 208.71 208.71 208.71 48.02 148.02 2660 76.816 76.836 <th></th> <th>Date</th> <th>4)</th> <th>8 CYLINDE</th> <th>RS</th>													Date	4)	8 CYLINDE	RS
Index 27.00 3730.74 206.71 200.71 </th <th>Totali</th> <th>27.00</th> <th>2756 74</th> <th>209 71</th> <th>209.71</th> <th></th> <th><u> </u></th> <th></th> <th></th> <th><u> </u></th> <th></th> <th></th> <th></th> <th>1 days</th> <th>600</th> <th>-</th>	Totali	27.00	2756 74	209 71	209.71		<u> </u>			<u> </u>				1 days	600	-
Orly Wo An. Houze		27.00	1/19/02	200.71	200.71	1				Aggre	aato Moisti	ILOS	03/27/00	1 days	630	660
ADMIX INFORMATION register and the second of the s	000 W/0 All.		140.02	140.02	140.02	-				Aggre		Botoh froo	03/21/03	7 days	2600	
Type oz /cwt oz /cwt <thoz cwt<="" th=""> <tho cwt<="" th=""> <tho cwt<<="" th=""><th></th><th></th><th>Α</th><th></th><th>RMATION</th><th></th><th></th><th></th><th></th><th></th><th>Content</th><th>H₂O (lbs.)</th><th>04/02/09</th><th>7 days</th><th>2000</th><th>2660</th></tho></tho></thoz>			Α		RMATION						Content	H ₂ O (lbs.)	04/02/09	7 days	2000	2660
Air 0.52 2.6 78.4 4.3 4.3 CA1 1.44% 1.50 04/09/09 14 days 4635 WR Type A 4.00 20.3 600.8 33.4 33.4 CA 2 1.00% 0.00 28 days 5960 28 days 5930 56 days 5847 Material 0 0 0 0 0 0 0 0 0 0 28 days 5960 28 days 5980 56 days 5847 Material 0 4ir 0 0 0 0 0 0 0 0 0 56 days 5990 6165 9 14 days 4ir 0 0 0 0 0 0 0 0 0 0	Type	oz /cwt	07 /CV	ml/cv	batch ml	actual ml	В	and / Name		Sand:	3.68%	2 21	01/02/00	14 days	4710	
WR Type A 4.00 20.3 600.8 33.4 33.4 CA 2 1.00% 0.00 28 days 5960 28 days 5930 5847 CA 4 1.00% 0.00 0.4/23/09 28 days 5930 5847 <	Air	0.52	26	78.1	4.3	4.3	-			CA 1	1 44%	1.50	04/09/09	14 days	4560	4635
Image: Construct of the second of t	WR Type A	4 00	20.3	600.8	33.4	33.4	}			CA 2	1.00%	0.00	0 1/00/00	28 days	5960	
CA 4 1.00% 0.00 04/23/09 28 days 5930 Water Added/Withheld Water Added/Withheld 56 days 6340 6165 PLASTIC TEST RESULTS OTHER INFO 0 0.00 04/23/09 28 days 5930 6165 Batch Time 1:21 PM % Air 6.00 Des. w/c 0.480				000.0						CA 3	1.00%	0.00		28 days	5650	5847
Water Added/Withheld 56 days 6340 6165 PLASTIC TEST RESULTS OTHER INFO 05/21/09 56 days 5990 6165 Batch Time 1:21 PM % Air 6.00 Des. w/c 0.480 0.5/21/09 56 days 5990 6165 Batch Time 1:29 PM Unit Weight (pcf) 141.80 Act. w/c 0.480			 	<u> </u>						CA 4	1.00%	0.00	04/23/09	28 days	5930	
PLASTIC TEST RESULTS OTHER INFO 05/21/09 56 days 5990 6163 Batch Time 1:21 PM % Air 6.00 Des. w/c 0.480 0.57 0.480 0.57 0.480 0.57 0.480 0.57 0.480 0.57 0.57 0.480 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.57 0.54 0.57 0.54 0.57 0.54 0.57 0.54 0.57 0.54 0.57 0.54 0.57 0.54 0.57 0.54 0.57 0.54 0.57 0.54 0.54 0.57 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.54 0.55 0.54 0.54 0.55 0.54 0.54 0.54 0.54 0.55 0.54 0.55 0.54 0.55 0.54 0.54 0.55 0.54 0.54 0.55 0.55 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Water</td> <td>Added/With</td> <td>held</td> <td></td> <td>56 days</td> <td>6340</td> <td>0405</td>										Water	Added/With	held		56 days	6340	0405
PLASTIC TEST RESULTS OTHER INFO Image: Constraint of the state of the stat										+/- h2o	Added	W/held	05/21/09	56 days	5990	0105
Batch Time 1:21 PM % Air 6.00 Des. w/c 0.480 Sample Time 1:29 PM Unit Weight (pcf) 141.80 Act. w/c 0.480 Image: Constraint of the second	Р	LASTIC TES	T RESULT	S			OTHER	INFO								
Sample Time 1:29 PM Unit Weight (pcf) 141.80 Act. w/c 0.480 Slump, in. 3.00 Yield Des.Un.Wt. 139.14 Technician who conducted tests: Mix Temp. 73.7 Initial set, min. NA Fine/Coarse 0.57 Technician who conducted tests: Material Design Buckets Weight Vol Air Un. Wt. Bucket Full Workability / Coarseness	Batch Time	1:21 PM	%	Air	6.00	Des.	w/c	0.48	30							
Slump, in. 3.00 Yield 1.47 Des.Un.Wt. 139.14 Mix Temp. 73.7 Initial set, min. NA Fine/Coarse 0.57 Air Temp. 75.7 Relative Yield 0.981 Bag Factor 5.4 Material Design Buckets Weight Vol Air Un. Wt. Bucket Full Workability / Coarseness	Sample Time	1:29 PM	Unit We	ight (pcf)	141.80	Act.	w/c	0.48	30							
Slump, in. 3.00 Yield Des.Un.Wt. 139.14 Mix Temp. 73.7 Initial set, min. NA Fine/Coarse 0.57 Air Temp. 75.7 Relative Yield 0.981 Bag Factor 5.4 Material Design Buckets Weight Vol Air Un. Wt. Bucket Full Workability / Coarseness																
Slump, in. 3.00 1.47 Des.Un.Wt. 139.14 Mix Temp. 73.7 Initial set, min. NA Fine/Coarse 0.57 Air Temp. 75.7 Relative Yield 0.981 Bag Factor 5.4 Material Design Buckets Weight Vol Air Un. Wt. Bucket Full Workability / Coarseness			Yi	eld												
Mix Temp. 73.7 Initial set, min. NA Fine/Coarse 0.57 Technician who conducted tests: Air Temp. 75.7 Relative Yield 0.981 Bag Factor 5.4 conducted tests: Material Design Buckets Weight Vol Air Un. Wt. Bucket Full Workability / Coarseness	Slump, in.	3.00			1.47	Des.U	n.Wt.	139.	14							
Air lemp. 75.7 Relative Yield 0.981 Bag Factor 5.4 Conducted tests: Material Design Buckets Weight Vol Air Un. Wt. Bucket Full Workability / Coarseness	Mix Temp.	73.7	Initial s	et, min.	NA	Fine/C	oarse	0.5	7				Technic	ian who		
Material Design Buckets Weight Vol Air Un. Wt. Bucket Full Workability / Coarseness	Air Temp.	/5./	Relativ	e Yield	0.981	Bag F	actor	5.4	ł				conduct	ed tests:		
Material Design Buckets Weight Vol Air Un. Wt. Bucket Full Workability Coarseness	Motorial	Design	Duakata	Majakt	Val			A :	11	Ducket Full			Workshiliter	Coorooroo		
	Comontitious 1:		BUCKETS		VOI		ow Ranco	AIF	130.94			CE Actual		Coarsenes	4NILIM!	
Cementitious 2: 14.11 1 14.11 24.471% Design Un. Wt 6.00% 139.14 42.55 AWF and the MUM Negative Under Radical	Cementitious 2	14.11	1	14.11	24.471%	Des	ian Un. Wt	6.00%	139.04	42.75	A	WF	/5.0 #NUM!	Nega	tive Under F	 Radical

	17.11	!	17.11	24 4710/	Low Hungo	0.0070	100.01	12.10		13.0	
Cementitious 2:	14.11	1	14.11	24.47170	Design Un. Wt	6.00%	139.14	42.55	AWF upper limit	#NUM!	Negative Under Radical
Sand #1:	62.55	2	31.27	36.141%	High Range	6.50%	138.45	42.38	AWF lower limit	#NUM!	Negative Under Radical
Coarse Aggregate 1:	108.11	2	54.06	63.859%	Bucket Weight	7.77			AWF	28.7	#NUM!
Coarse Aggregate 2:	0.00	2	0.00	0.000%	Bucket Volume	0.250			CF upper limit	#NUM!	Negative Under Radical
Coarse Aggregate 3:	0.00	1	0.00	0.000%	Bucket Full	43.22			CF lower limit	#NUM!	Negative Under Radical
Coarse Aggregate 4:	0.00	1	0.00	0.000%	Theoretical Air	4.20			WF Actual	30.2	

ts / Notes / Observatio	Comments / No	Comr				idy No. 216	- State St	Durability	age and D	Shrinka	MDOT		
			BCD	Lab #:				739	BCD 080	Project:		MDOT	Customer:
		1	Mix 8	Set #:			GU	Туре		Notes:	8	Mix	MIX NUMBER
			0.06	Factor:	1.50	Size(c.f.):	4,000 psi	f'c:		Mix Code:		3/31/2009	Date:
				Agg. absorp	SSD Specific			batch Wt.	hatch Wt.	lab batch	cu. vd. Wt	NFO	MIX DESIGN I
			Agg. FM	tion	Gravity	rial Source	Mate	(lbs.)	(lbs.)	Wt. (lbs.)	(lbs)	Vol. (c.f.)	Material
					3.11	nt Type GU	Cem	28.58	28.58	28.58	514.37	2.65	Cement 1:
							<u> </u>		0.00	0.00		0.00	Cement 2:
Air 5.5 to 6.5 %. Sensor	rt Slump, Air 5.5	Report Slu			<u> </u>		<u> </u>		0.00	0.00		0.00	Fly Ash:
							L		0.00	0.00		0.00	GGBFS:
			2.96	0.31%	2.632	I Source 1	San	62.08	62.08	60.33	1086.02	6.61	Sand 1:
			7.14	2.29%	2.529	avel Source 1	No 57 G	108.80	108.80	106.61	1919.00	12.16	Coarse Aggregate 1:
			6.84	0.97%	2.690		<u> </u>		0.00	0.00	0.00	0.00	Coarse Aggregate 2:
			5.52	1.37%	2.673				0.00	0.00	0.00	0.00	Coarse Aggregate 3:
									0.00				
			3.26	2.43%	2.604		÷		0.00	0.00	0.00	0.00	Coarse Aggregate 4:
									0.00	0.00	0.00	1.62	Air: 6.00%
ength Test Results	Strength				1.00			9.78	9.78	13.72	246.90	3.96	Water:
AGE psi Av	AGE												"+-Air: 0.50%
4x8 CYLINDERS	ite 4	Date											
days 2250	1 days								209.24	209.24	3766.29	27.00	Total:
days 2060	1/09 1 days	04/01/09	ures	egate Moisti	Aggre				148.40	148.40	148.40		UW w/o Air:
' days 4060 🛛	7 days		Batch free	Free H ₂ O					·	-	-		
' days 4510	7/09 7 days	04/07/09	H ₂ O (IDS.)	Content					ORMATION	DMIX INFO	A		_
4 days 5060 4	14 days		1.74	2.90%	Sand:	nd / Name	Bra	actual ml	batch ml	ml /cy	oz /cy	oz /cwt	Туре
4 days 4830	4/09 14 days	04/14/09	2.19	2.10%	CA 1			5.1	5.1	91.3	3.1	0.60	Air
8 days 5580	28 days	-	0.00	0.00%	CA 2		. .	33.8	33.8	608.5	20.6	4.00	WR Type A
8 days 5280 5	28 days		0.00	0.00%	CA 3		÷		.				
8 days 5410	8/09 28 days	04/28/09	0.00	0.00%	CA 4								
6 days 5820 5	56 days		ineia	Added/with	water		+						
6 days 5690	6/09 56 days	05/26/09	W/held	Added	+/- h2o	150				·e	треения		
						0.490		Doc	7.00	Air			Rotch Time
						0.480	. w/c	Act	120.52	hight (pcf)	/0 L Init W/c	4.03 FM	Sample Time
						0.400	. w/c	7.01	139.32	igin (pci)	Onit we	4.117.00	Sample Time
										eld	Y		
						139.49	Jn.Wt.	Des.l	1.50			4.00	Slump, in.
who	chnician who	Techni				0.57	Coarse	Fine/0	NA	set, min.	Initial s	73.6	Mix Temp.
tests:	nducted tests:	conduc				5.5	actor	Bag	1.000	/e Yield	Relativ	73.6	Air Temp.
parseness	bility / Coarsene	Workability			Bucket Full	Air Un. Wt.			Vol	Weight	Buckets	Design	Material
							_						

Material	Design	Buckets	Weight	Vol		Air	Un. Wt.	Bucket Full	v	Vorkability	/ Coarseness
Cementitious 1:	28.58	1	28.58	24 4710/	Low Range	5.50%	140.19	42.82	CF Actual	75.0	#NUM!
Cementitious 2:	0.00	1	0.00	24.47170	Design Un. Wt	6.00%	139.49	42.64	AWF upper limit	#NUM!	Negative Under Radical
Sand #1:	62.08	2	31.04	36.140%	High Range	6.50%	138.80	42.47	AWF lower limit	#NUM!	Negative Under Radical
Coarse Aggregate 1:	108.80	1	108.80	63.860%	Bucket Weight	7.77			AWF	28.9	#NUM!
Coarse Aggregate 2:	0.00	2	0.00	0.000%	Bucket Volume	0.250			CF upper limit	#NUM!	Negative Under Radical
Coarse Aggregate 3:	0.00	1	0.00	0.000%	Bucket Full	42.65			CF lower limit	#NUM!	Negative Under Radical
Coarse Aggregate 4:	0.00	1	0.00	0.000%	Theoretical Air	5.98			WF Actual	30.2	

		MDOT	Shrinka	age and D	urability	- State St	udy No. 216				Comm	ents / Note	s / Obser	vations
Customer:	MDOT		Project:	BCD 080	739				Lab #:	BCD				
MIX NUMBER	Mix	9	Notes:	Т	ype GU - 2	25% C Ash			Set #:	Mix 9				
Date:	4/2/2009		Mix Code:		f'c:	4,000 psi	Size(c.f.):	1.50	Factor:	0.06				
MIX DESIGN I	NFO	cu. vd. Wt.	lab batch	hatch Wt.	batch Wt.			SSD Specific	Agg. absorp					
Material	Vol. (c.f.)	(lbs)	Wt. (lbs.)	(lbs.)	(lbs.)	Mate	erial Source	Gravity	tion	Agg. FM				
Cement 1:	1.95	379.01	21.06	21.06	21.06	Cem	ent Type GU	3.11						
Cement 2:	0.00	<u>.</u>	0.00	0.00		L								
Fly Ash:	0.77	126.34	7.02	7.02	7.02	Тур	e C Fly Ash	2.64			Report Slur	np. Air 5.5 to	6.5 %. 66	water.
GGBFS:	0.00		0.00	0.00		L					Sensor 3.			
Sand 1:	6.61	1086.02	60.33	62.11	62.11	San	d Source 1	2.632	0.31%	2.96				
Coarse Aggregate 1:	12.16	1919.00	106.61	107.82	107.82	No 57 G	iravel Source 1	2.529	2.29%	7.14				
Coarse Aggregate 2:	0.00	0.00	0.00	0.00		L		2.690	0.97%	6.84				
Coarse Aggregate 3:	0.00	0.00	0.00	0.00				2.673	1.37%	5.52				
Coarse Aggregate 4:	0.00	0.00	0.00	0.00				2.604	2.43%	3.26				
Air: 6.00%	1.62	0.00	0.00	0.00										
Water:	3.89	242.57	13.48	10.49	10.49			1.00				Strength To	est Result	s
"+-Air: 0.50%												AGE	psi	Avg. psi
											Date	4x	8 CYLINDE	RS
Total:	27.00	3752.94	208.50	208.50								1 days	1480	4445
UW w/o Air:		147.87	147.87	147.87				Aggre	gate Moist	ures	04/03/09	1 days	1350	1415
									Free H ₂ O	Batch free		7 days	4020	4030
		Α	DMIX INFC	RMATION					Content	H ₂ O (lbs.)	04/09/09	7 days	4040	4030
Туре	oz /cwt	oz /cy	ml /cy	batch ml	actual ml	Bra	and / Name	Sand:	2.95%	1.77		14 days	4710	4625
Air	0.52	2.6	77.7	4.3	4.3			CA 1	1.16%	1.21	04/16/09	14 days	4540	4023
WR Type A	4.00	20.2	597.8	33.2	33.2			CA 2	0.00%	0.00		28 days	5630	
						L		CA 3	0.00%	0.00		28 days	4930	5420
		ļ						CA 4	0.00%	0.00	04/30/09	28 days	5700	
								Water	Added/With	held		56 days	6360	6340
								+/- h2o	Added	W/held	05/28/09	56 days	6320	
F	PLASTIC TES	T RESULT	S			OTHER I	NFO							
Batch Time	8:42 AM	%	Air	5.75	Des.	. w/c	0.480							
Sample Lime	8:50 AM	Unit We	ight (pcf)	142.68	Act.	W/C	0.480							
Slump in	7 25	Yi	eld	1 46	Doc	In Wt	120.00							
Mix Temp	73.0	Initial e	et min	NA	Eino/C	`oaree	0.57				Teehrie	ion who	1	
Air Temp	73.6	Relativ	e Yield	0 974	Bag F	actor	5.4				conduct	an tosts		
7 iii romp.	10.0	Relativ		0.017	Dayi	40101	U.T				conduct	cu 16313.		
Material	Design	Buckets	Weight	Vol			Air Un. Wt	Bucket Full			Workability	Coarsenes	s	
Cementitious 1:	21.06	1	21.06		L	ow Range	5.50% 139.70	42.69		CF Actual	75.0		#NUM!	

Material	Design	Buckets	Weight	Vol		Air	Un. Wt.	Bucket Full	v	Vorkability	/ Coarseness
Cementitious 1:	21.06	1	21.06	24 4719/	Low Range	5.50%	139.70	42.69	CF Actual	75.0	#NUM!
Cementitious 2:	0.00	1	0.00	24.47170	Design Un. Wt	6.00%	139.00	42.52	AWF upper limit	#NUM!	Negative Under Radical
Sand #1:	62.11	2	31.05	36.140%	High Range	6.50%	138.31	42.35	AWF lower limit	#NUM!	Negative Under Radical
Coarse Aggregate 1:	107.82	2	53.91	63.860%	Bucket Weight	7.77			AWF	28.6	#NUM!
Coarse Aggregate 2:	0.00	2	0.00	0.000%	Bucket Volume	0.250			CF upper limit	#NUM!	Negative Under Radical
Coarse Aggregate 3:	0.00	1	0.00	0.000%	Bucket Full	43.44			CF lower limit	#NUM!	Negative Under Radical
Coarse Aggregate 4:	0.00	1	0.00	0.000%	Theoretical Air	3.51			WF Actual	30.2	

		MDOT	Shrinka	age and D	urability	- State St	udy No. 216				Comm	ents / Note	es / Obser	vations
Customer:	MDOT		Project:	BCD 080	739				Lab #:	BCD				
MIX NUMBER	Mix	10	Notes:	Т	Type GU - 2	25% F Ash			Set #:	Mix 10				
Date:	4/2/2009		Mix Code:		f'c:	4,000 psi	Size(c.f.):	1.50	Factor:	0.06				
MIX DESIGN I	NFO	cu vd Wt	lab batch	hatch Wt	hatch Wt			SSD Specific	Agg. absorp					
Material	Vol. (c.f.)	(lbs)	Wt. (lbs.)	(lbs.)	(lbs.)	Mate	erial Source	Gravity	tion	Agg. FM				
Cement 1:	1.91	371.31	20.63	20.63	20.63	Cem	ent Type GU	3.11						
Cement 2:	0.00		0.00	0.00										
Fly Ash:	0.89	123.77	6.88	6.88	6.88	Тур	e F Fly Ash	2.24			Report Slur	np. Air 5.5 to	o 6.5 %. 67	water.
GGBFS:	0.00		0.00	0.00							Sensor 4.			
Sand 1:	6.61	1086.04	60.34	62.11	62.11	San	d Source 1	2.632	0.31%	2.96				
Coarse Aggregate 1:	12.16	1919.00	106.61	107.82	107.82	No 57 G	Gravel Source 1	2.529	2.29%	7.14				
Coarse Aggregate 2:	0.00	0.00	0.00	0.00				2.690	0.97%	6.84				
Coarse Aggregate 3:	0.00	0.00	0.00	0.00		<u> </u>		2.673	1.37%	5.52				
Coarse Aggregate 4:	0.00	0.00	0.00	0.00				2.604	2.43%	3.26				
Air: 6.00%	1.62	0.00	0.00	0.00										
Water:	3.81	237.64	13.20	10.22	10.22			1.00				Strength To	est Result	s
"+-Air: 0.50%												AGE	psi	Avg. psi
											Date	4x	8 CYLINDE	RS
Total:	27.00	3737.76	207.65	207.65								1 days	1490	1535
UW w/o Air:		147.27	147.27	147.27				Aggre	gate Moistu	ures	04/03/09	1 days	1580	1333
									Free H₂O	Batch free		7 days	3610	3600
		Α	DMIX INFO	ORMATION					Content	H ₂ O (Ibs.)	04/09/09	7 days	3590	
Туре	oz /cwt	oz /cy	ml /cy	batch ml	actual ml	Bra	and / Name	Sand:	2.95%	1.77		14 days	4230	4175
Air	0.80	4.0	117.1	6.5	6.5	_		CA 1	1.16%	1.21	04/16/09	14 days	4120	
WR Type A	4.00	19.8	585.7	32.5	32.5	Ļ		CA 2	0.00%	0.00		28 days	5000	
			L		ļ	↓		CA 3	0.00%	0.00		28 days	4920	4970
								CA 4	0.00%	0.00	04/30/09	28 days	4990	
						<u> </u>		Water	Added/With	held	05/00/00	56 days	6030	5720
F	I PLASTIC TES	T RESULT	S	İ			NEO	+/- n20	Added	w/neid	05/28/09	56 0ays	5410	
Batch Time	10:43 AM	%	Air	5.50	Des.	. w/c	0.480							
Sample Time	11:00 AM	Unit We	ight (pcf)	142.04	Act.	w/c	0.480							
		a 600 600 600 600 600												
Slump, in.	6.75	Yi	eld	1.46	Des.U	In.Wt.	138.44							
Mix Temp.	73.2	Initial s	et, min.	NA	Fine/C	Coarse	0.57				Technic	ian who		
Air Temp.	73.8	Relativ	ve Yield	0.975	Bag F	actor	5.3				conduct	ed tests:		
	1	-		1										
Material	Design	Buckets	Weight	Vol			Air Un. Wt.	Bucket Full			Workability	Coarsenes	s	
Cementitious 1:	20.63	1	20.63		I L	ow Range	5.50% 139.13	42.55		CF Actual	75.0		#NUM!	

Material	Design	Buckets	Weight	Vol		Air	Un. Wt.	Bucket Full	1	Vorkability	/ Coarseness
Cementitious 1:	20.63	1	20.63	24 4710/	Low Range	5.50%	139.13	42.55	CF Actual	75.0	#NUM!
Cementitious 2:	0.00	1	0.00	24.47170	Design Un. Wt	6.00%	138.44	42.38	AWF upper limit	#NUM!	Negative Under Radical
Sand #1:	62.11	2	31.05	36.141%	High Range	6.50%	137.75	42.21	AWF lower limit	#NUM!	Negative Under Radical
Coarse Aggregate 1:	107.82	2	53.91	63.859%	Bucket Weight	7.77			AWF	28.4	#NUM!
Coarse Aggregate 2:	0.00	2	0.00	0.000%	Bucket Volume	0.250			CF upper limit	#NUM!	Negative Under Radical
Coarse Aggregate 3:	0.00	1	0.00	0.000%	Bucket Full	43.28			CF lower limit	#NUM!	Negative Under Radical
Coarse Aggregate 4:	0.00	1	0.00	0.000%	Theoretical Air	3.55			WF Actual	30.2	

		MDOT	Shrinka	age and D	urability	- State St	tudy No. 2	16				Comm	ents / Note	s / Observ	vations
Customer:	MDOT		Project:	BCD 080	739					Lab #:	BCD				
MIX NUMBER	Mix	11	Notes:	Ту	/pe GU - 50	0% GGBFS	5			Set #:	Mix 11				
Date:	4/7/2009		Mix Code:		f'c:	4,000 psi	Siz	e(c.f.):	1.50	Factor:	0.06				
MIX DESIGN	NFO	cu vd Wt	lab batch	hatch Wt	hatch Wt				SSD Specific	Agg. absorp					
Material	Vol. (c.f.)	(lbs)	Wt. (lbs.)	(lbs.)	(lbs.)	Mate	erial Source		Gravity	tion	Agg. FM				
Cement 1:	1.31	253.32	14.07	14.07	14.07	Cem	ent Type GU		3.11						
Cement 2:	0.00		0.00	0.00		1		i							
Fly Ash:	0.00		0.00	0.00		<u> </u>						Report Slun	np. Air 5.5 to	6.5 %. Wa	ater 72.
GGBFS:	1.40	253.32	14.07	14.07	14.07	 	GGBFS		2.89			Sensor 3.			
Sand 1:	6.61	1086.03	60.34	62.09	62.09	San	nd Source 1		2.632	0.31%	2.96				
Coarse Aggregate 1:	12.16	1919.00	106.61	107.55	107.55	No 57 G	Gravel Source	e 1	2.529	2.29%	7.14				
Coarse Aggregate 2:	0.00	0.00	0.00	0.00					2.690	0.97%	6.84				
Coarse Aggregate 3:	0.00	0.00	0.00	0.00		<u> </u>			2.673	1.37%	5.52				
Coarse Aggregate 4:	0.00	0.00	0.00	0.00					2.604	2.43%	3.26				
Air: 6.00%	1.62	0.00	0.00	0.00											
Water:	3.90	243.18	13.51	10.82	10.82				1.00			.,	Strength Te	est Result	5
"+-Air: 0.50%													AGE	psi	Avg. psi
												Date	4x	8 CYLINDE	RS
Total:	27.00	3754.85	208.60	208.60				_					1 days	740	715
UW w/o Air:		147.95	147.95	147.95					Aggre	gate Moistu	ures	04/08/09	1 days	690	713
		-	-							Free H ₂ O	Batch free		7 days	3810	3735
_		Α	DMIX INFO	RMATION						Content	H ₂ O (Ibs.)	04/14/09	7 days	3660	
Туре	oz /cwt	oz /cy	ml /cy	batch ml	actual ml	Bra	and / Name		Sand:	2.91%	1.75		14 days	5330	5500
Air	0.48	2.4	71.9	4.0	4.0	↓			CA 1	0.90%	0.94	04/21/09	14 days	5670	
WR Type A	4.00	20.3	599.3	33.3	33.3	↓			CA 2	0.00%	0.00		28 days	5870	
		ļ			ļ	∔			CA 3	0.00%	0.00		28 days	6340	6187
						_			CA 4	0.00%	0.00	05/05/09	28 days	6350	L
						<u> </u>			water .	Added/With		00/00/00	56 days	6730	6705
			· ·				INFO		+/- n20	Added	vv/neid	06/02/09	56 days	6680	<u> </u>
Batch Time	12.13 PM	% KESULI	Δir	7.00	Des		0.480								
Sample Time	12:22 PM	Unit We	iaht (pcf)	140 80	Act.	w/c	0.480								
		0	.g.n (po.)	140.00	,		01100								
		Yi	eld												
Slump, in.	6.00			1.48	Des.U	Jn.Wt.	139.07								
Mix Temp.	71.8	Initial s	et, min.	NA	Fine/C	Coarse	0.57					Technic	ian who		
Air Temp.	74.3	Relativ	/e Yield	0.988	Bag F	actor	5.4					conduct	ed tests:		
Material	Design	Buckets	Weight	Vol			Air U	n. Wt.	Bucket Full			Workability /	Coarsenes	5	
Cementitious 1:	14.07	1	14.07	24 471%	L	ow Range	5.50% 1	39.77	42.72		CF Actual	75.0		#NUM!	

Cementitious 1:	14.07	1	14.07	24 4710/	Low Range	5.50%	139.77	42.72	CF Actual	75.0	#NUM!
Cementitious 2:	14.07	1	14.07	24.47170	Design Un. Wt	6.00%	139.07	42.55	AWF upper limit	#NUM!	Negative Under Radical
Sand #1:	62.09	2	31.04	36.140%	High Range	6.50%	138.38	42.37	AWF lower limit	#NUM!	Negative Under Radical
Coarse Aggregate 1:	107.55	2	53.77	63.860%	Bucket Weight	7.78			AWF	28.7	#NUM!
Coarse Aggregate 2:	0.00	2	0.00	0.000%	Bucket Volume	0.250			CF upper limit	#NUM!	Negative Under Radical
Coarse Aggregate 3:	0.00	1	0.00	0.000%	Bucket Full	42.98			CF lower limit	#NUM!	Negative Under Radical
Coarse Aggregate 4:	0.00	1	0.00	0.000%	Theoretical Air	4.83			WF Actual	30.2	1

		MDOT	Shrinka	age and D	urability	- State Study	No. 216				Comm	ents / Note	s / Obser	vations
Customer:	MDOT		Project:	BCD 080	739				Lab #:	BCD				
MIX NUMBER	Mix	12	Notes:	TYPE I	- 25% C A	sh Blended Agg			Set #:	Mix 12				
Date:	4/9/2009		Mix Code:		f'c:	4,000 psi	Size(c.f.):	1.50	Factor:	0.06				
MIX DESIGN	INFO	cu. vd. Wt.	lab batch	batch Wt.	batch Wt.			SSD Specific	Agg. absorp					
Material	Vol. (c.f.)	(lbs)	Wt. (lbs.)	(lbs.)	(lbs.)	Material S	ource	Gravity	tion	Agg. FM				
Cement 1:	1.85	363.00	20.17	20.17	20.17	Cement T	ype I	3.15						
Cement 2:	0.00		0.00	0.00										
Fly Ash:	0.73	120.00	6.67	6.67	6.67	Type C Fl	/ Ash	2.64			Slump 6 1/4	to 7 1/4". A	ir 5.5 to 6.5	%. Sensor
GGBFS:	0.00		0.00	0.00							3. Water /2	.8.		
Sand 1:	1.11	1275.61	70.87	73.07	73.07	Sand Sou	rce 1	2.632	0.31%	2.96				
Coarse Aggregate 1:	8.13	1283.00	/1.28	/1./1	71.71	NO 57 Gravel	Source 1	2.529	2.29%	7.14				
Coarse Aggregate 2:	3.19	502.00	27.89	28.60	28.60	No 8 Gravel 9	Source 1	2.522	2.88%	6.02				
Coarse Aggregate 3:	0.00	0.00	0.00	0.00				2.673	1.37%	5.52				
0	0.00	0.00		0.00				0.004	0.400/	0.00				
Coarse Aggregate 4:	0.00	0.00	0.00	0.00				2.604	2.43%	3.26				
Water	3.72	232.00	12 89	9.54	9 54			1.00				Strength Te	est Result	s
". Air: 0.50%	0.72	202.00	12.00	5.54	0.04			1.00					noi	Ava noi
+-All. 0.50%												AGE	psi	Avg. psi
											Date	4x	8 CYLINDE	RS
Total:	27.00	3775.61	209.76	209.76								1 days	1570	1550
UW w/o Air:		148.76	148.76	148.76				Aggre	gate Moistu	ures	04/10/09	1 days	1530	1550
									Free H ₂ O	Batch free		7 days	3930	3960
_		Α	DMIX INFO	ORMATION					Content	H ₂ O (IDS.)	04/16/09	7 days	3990	
Туре	oz /cwt	oz /cy	ml /cy	batch ml	actual ml	Brand / N	ame	Sand:	3.12%	2.20		14 days	4560	4560
Air	0.35	1./	50.0	2.8	2.8			CA 1	0.62%	0.43	04/23/09	14 days	4560	
WR Type A	4.00	19.3	5/1.4	31.7	31.7				2.64%	0.72		28 days	5270	E420
	╂								0.00%	0.00	05/07/00	20 days	5400	5430
	╬							CA 4 Water	0.00% Modda	beld	05/07/09	26 days	5860	
	╬					+		+/- h20		W/held	06/04/09	56 days	5870	5865
	II PLASTIC TES	I T RESULT	S	!		OTHER INFO		17 1120	Added	W/IICIG	00/04/03	00 aays	0070	
Batch Time	10:19 AM	%	Air	6.00	Des	w/c	0.480							
Sample Time	10:27 AM	Unit We	ight (pcf)	141.96	Act.	w/c	0.480							
								[
		Yi	eld											
Slump, in.	6.50			1.48	Des.L	in.Wt.	139.84							
Mix Temp.	75.3	Initial s	et, min.	NA 0.085	Fine/C	oarse	0.71				Technic	ian who		
Air Temp.	/5.2	Relativ	e Yield	0.985	вад н	actor	5.1				conduct	ea tests:		
Motorial	Design	Buckete	Woight	Val	1	۸:	110 144	Bucket Full			Workability	Coarsonoo	-	
iviateriai	Design	Buckets	weight	VOI	<u> </u>	Air	01. Wt.	BUCKEL FUII		05 4-4		Jourselles		

Material	Design	Buckets	Weight	Vol		Air	Un. Wt.	Bucket Full	V	Vorkability	/ Coarseness
Cementitious 1:	20.17	1	20.17	22 209%	Low Range	5.50%	140.54	42.92	CF Actual	55.4	Within MDOT Limits
Cementitious 2:	6.67	1	6.67	23.300%	Design Un. Wt	6.00%	139.84	42.74	AWF upper limit	39.6	Positive
Sand #1:	73.07	2	36.54	41.678%	High Range	6.50%	139.14	42.57	AWF lower limit	32.4	Positive
Coarse Aggregate 1:	71.71	2	35.85	41.920%	Bucket Weight	7.78			AWF	32.6	Within MDOT Limits
Coarse Aggregate 2:	28.60	2	14.30	16.402%	Bucket Volume	0.250			CF upper limit	68.1	Positive
Coarse Aggregate 3:	0.00	1	0.00	0.000%	Bucket Full	43.27			CF lower limit	53.9	Positive
Coarse Aggregate 4:	0.00	1	0.00	0.000%	Theoretical Air	4.57			WF Actual	34.8	

		MDOT	Shrinka	age and D	urability	- State Study	No. 216				Comm	ents / Note	s / Obser	vations
Customer:	MDOT		Project:	BCD 080	739				Lab #:	BCD				
MIX NUMBER	Mix	13	Notes:	Type I	- 25% F As	h Blended Agg.			Set #:	Mix 13	1			
Date:	4/9/2009		Mix Code:		f'c:	4,000 psi	Size(c.f.):	1.50	Factor:	0.06				
MIX DESIGN	INFO	cu. vd. Wt.	lab batch	batch Wt.	batch Wt.			SSD Specific	Agg. absorp					
Material	Vol. (c.f.)	(lbs)	Wt. (lbs.)	(lbs.)	(lbs.)	Material S	Source	Gravity	tion	Agg. FM				
Cement 1:	1.87	368.00	20.44	20.44	20.44	Cement 1	Type I	3.15						
Cement 2:	0.00		0.00	0.00										
Fly Ash:	0.87	122.00	6.78	6.78	6.78	Type F Fl	y Ash	2.24			Slump 5 to	6. Air 5.5 to (6.5 %.	
GGBFS:	0.00		0.00	0.00										
Sand 1:	7.67	1259.81	69.99	72.17	72.17	Sand Sou	urce 1	2.632	0.31%	2.96				
Coarse Aggregate 1:	8.47	1337.00	/4.28	74.73	74.73	No 57 Gravel	Source 1	2.529	2.29%	7.14				
Coarse Aggregate 2:	2.73	429.00	23.83	24.32	24.32	No 8 Gravel	Source 1	2.522	2.88%	6.02				
Coarse Aggregate 3:	0.00	0.00	0.00	0.00	_			2.673	1.37%	5.52				
Coarse Aggregate 4:	0.00	0.00	0.00	0.00				2.604	2.43%	3.26				
Air: 6.00%	1.62	0.00	0.00	0.00										
Water:	3.77	235.00	13.06	9.94	9.94			1.00				Strength Te	est Result	s
"+-Air: 0.50%												AGE	psi	Avg. psi
											Date	4x	B CYLINDE	RS
Total:	27.00	3750.81	208.38	208.38		•		•				1 days	1530	4545
UW w/o Air:		147.79	147.79	147.79	-			Aggre	gate Moistu	ires	04/10/09	1 days	1560	1545
		•							Free H ₂ O	Batch free		7 days	3430	2525
		Α	DMIX INFO	ORMATION					Content	H ₂ O (lbs.)	04/16/09	7 days	3640	3333
Туре	oz /cwt	oz /cy	ml /cy	batch ml	actual ml	Brand / N	lame	Sand:	3.12%	2.18		14 days	4360	4350
Air	0.75	3.7	108.7	6.0	6.0			CA 1	0.62%	0.45	04/23/09	14 days	4340	4000
WR Type A	4.00	19.6	579.7	32.2	32.2			CA 2	2.09%	0.48		28 days	4730	
								CA 3	0.00%	0.00		28 days	4790	4880
		ļ						CA 4	0.00%	0.00	05/07/09	28 days	5120	
		ļ	 		ļ			Water	Added/With	held		56 days	5470	5555
								+/- h2o	Added	W/held	06/04/09	56 days	5640	
Datab Time	PLASTIC TES	TRESULT	S		Dee	OTHER INFO	0.400							
Batch Time	1:40 PM	%	Alf	5.50	Des.	. W/C	0.480							
Sample Time	1:49 PM	Unit we	ignt (pci)	141.96	ACI.	w/c	0.479							
		Yi	eld											
Slump, in.	5.00			1.47	Des.U	Jn.Wt.	138.92							
Mix Temp.	75.5	Initial s	et, min.	NA	Fine/C	Coarse	0.71	†			Technic	ian who		
Air Temp.	74.9	Relativ	/e Yield	0.979	Bag F	actor	5.2				conduct	ed tests:		
Material	Design	Buckets	Weight	Vol		Ai	r Un. Wt.	Bucket Full			Workability	/ Coarseness	3	
0								10.00		05 4 4 1				

Material	Design	Buckets	Weight	Vol		Air	Un. Wt.	Bucket Full	١	Norkability	/ Coarseness
Cementitious 1:	20.44	1	20.44	24 1150/	Low Range	5.50%	139.62	42.68	CF Actual	57.9	Within MDOT Limits
Cementitious 2:	0.00	1	0.00	24.113%	Design Un. Wt	6.00%	138.92	42.51	AWF upper limit	39.9	Positive
Sand #1:	72.17	2	36.08	41.635%	High Range	6.50%	138.23	42.34	AWF lower limit	32.1	Positive
Coarse Aggregate 1:	74.73	1	74.73	44.186%	Bucket Weight	7.78			AWF	32.8	Within MDOT Limits
Coarse Aggregate 2:	24.32	2	12.16	14.178%	Bucket Volume	0.250			CF upper limit	68.8	Positive
Coarse Aggregate 3:	0.00	1	0.00	0.000%	Bucket Full	43.27			CF lower limit	53.2	Positive
Coarse Aggregate 4:	0.00	1	0.00	0.000%	Theoretical Air	3.94			WF Actual	34.8	1

		MDOT	Shrinka	age and D	urability	- State Stu	idy No. 216				Comm	nents / Note	s / Obser	vations
Custome	: MDOT		Project:	BCD 080	739				Lab #:	BCD				
MIX NUMBE	R Mix	14	Notes:		Type I - M	IDOT BD			Set #:	Mix 14				
Date	4/14/2009		Mix Code:		f'c:	4,000 psi	Size(c.f.):	1.50	Factor:	0.06				
MIX DESIGN	INFO	cu. vd. Wt.	lab batch	batch Wt.	batch Wt.			SSD Specific	Agg. absorp					
Materia	Vol. (c.f.)	(lbs)	Wt. (lbs.)	(lbs.)	(lbs.)	Mater	ial Source	Gravity	tion	Agg. FM				
Cement 1	: 2.67	525.00	29.17	29.17	29.17	Cem	ent Type I	3.15						
Cement 2	0.00	ļ	0.00	0.00										
Fly Asl	: 0.00		0.00	0.00							Slump 2 1/4	4 - 3 3/4". Air	6 1/2 - 7 1/	2%. Sensor
GGBFS	0.00		0.00	0.00							3.			
Sand	: 7.76	1274.85	70.82	72.55	72.55	Sand	Source 1	2.632	0.31%	2.96				
Coarse Aggregate	: 7.93	1251.00	69.50	70.38	70.38	NO 57 Gr	avel Source 1	2.529	2.29%	7.14				
Coarse Aggregate 2	2.97	467.00	25.94	26.60	26.60	No 8 Gra	avel Source 1	2.522	2.88%	6.02				
Coarse Aggregate 3	0.00	0.00	0.00	0.00		<u> </u>		2.673	1.37%	5.52				
Coarse Aggregate	. 0.00	0.00	0.00	0.00				2 604	2 43%	3.26				
Air: 7.00°	1.89	0.00	0.00	0.00				2.00 1	2.1070	0.20				
Wate	3.78	236.00	13.11	9.86	9.86			1.00				Strenath Te	est Result	s
"+-Air: 0.50°	4											AGE	nsi	Avg. psi
· /											Data	//o_ /v		PS
											Date	44		
Tota	: 27.00	3753.85	208.55	208.55								1 days	2340	2380
UW w/o Ai	:	149.50	149.50	149.50				Aggre	gate Moistu	ires	04/15/09	1 days	2420	
		•							Free H ₂ O	Batch free	04/04/00	7 days	4570	4330
Turno	(A				Bron	d / Nama	Candi	2 4 40/	4 70	04/21/09	/ days	4090	
Type	02 /CWL		101.1	Datch mi		Di di		Sand:	2.44%	1.72	04/28/00	14 days	4070	4635
	4.00	21.0	621.1	24.5	24.5	+			2.58%	0.00	04/20/09	28 days	4400	
VIC Type A	4.00	21.0	021.1	34.5	34.5	<u>+</u>		CA 3	0.00%	0.00		20 days 28 days	4850	4713
	-		+			+		CA 4	0.00%	0.00	05/12/09	28 days	5110	
						+		Water	Added/With	held	00/12/00	56 days	5470	
						†		+/- h2o	Added	W/held	06/09/09	56 days	5430	5450
	PLASTIC TES	T RESULT	S			OTHER IN	FO							
Batch Time	1:16 PM	%	Air	7.50	Des.	. w/c	0.450							
Sample Time	1:30 PM	Unit We	ight (pcf)	139.72	Act.	w/c	0.449							
	1													
		Yi	eld											
Slump, in.	2.50			1.49	Des.L	Jn.Wt.	139.03							
Mix Temp.	73.6	Initial s	set, min.	NA	Fine/C	Coarse	0.74				Technic	ian who		
Air Temp.	73.8	Relativ	/e Yield	0.995	Bag F	actor	5.6				conduct	ed tests:		
	1 5 .	D 1 -	147 1 1 -		1						A/	10	_	
Material	Design	Buckets	Weight	Vol	ļ		Air Un. Wt.	Bucket Full		05.4.4.1	workability	/ Coarsenes	5	

Material	Design	Buckets	Weight	Vol		Air	Un. Wt.	Bucket Full	1	Vorkability	/ Coarseness
Cementitious 1:	29.17	1	29.17	22.000%	Low Range	6.50%	139.73	42.71	CF Actual	55.8	Within MDOT Limits
Cementitious 2:	0.00	1	0.00	23.900%	Design Un. Wt	7.00%	139.03	42.54	AWF upper limit	39.7	Positive
Sand #1:	72.55	2	36.27	42.596%	High Range	7.50%	138.34	42.36	AWF lower limit	32.3	Positive
Coarse Aggregate 1:	70.38	2	35.19	41.800%	Bucket Weight	7.78			AWF	34.5	Within MDOT Limits
Coarse Aggregate 2:	26.60	1	26.60	15.604%	Bucket Volume	0.250			CF upper limit	73.1	Positive
Coarse Aggregate 3:	0.00	1	0.00	0.000%	Bucket Full	42.71			CF lower limit	48.9	Positive
Coarse Aggregate 4:	0.00	1	0.00	0.000%	Theoretical Air	6.54			WF Actual	35.6	

		MDOT	Shrinka	age and D	urability	- State St	tudy No	o. 216				Comm	ents / Note	s / Obser	vations
Customer:	MDOT		Project:	BCD 080	739		-			Lab #:	BCD				
MIX NUMBER	Mix 1	5.1	Notes:	Type I	- 50% GG	BFS MDO	T BD			Set #:	Mix 15.1				
Date:	8/11/2009		Mix Code:		f'c:	4,000 psi		Size(c.f.):	1.50	Factor:	0.06				
MIX DESIGN I	NFO	cu vd Wt	lab batch	hatch Wt	Actual lab				SSD Specific	Agg. absorp					
Material	Vol. (c.f.)	(lbs)	Wt. (lbs.)	(lbs.)	(lbs.)	Mat	erial Sou	rce	Gravity	tion	Agg. FM				
Cement 1:	1.29	254.50	14.14	14.14	14.14	Ce	ment Typ	ə I	3.15						
Cement 2:	0.00		0.00	0.00											
Fly Ash:	0.00		0.00	0.00		<u> </u>			<u> </u>			Slump 2 1/4	- 3 3/4". Air	6 1/2 - 7 1/2	2%. Sensor
GGBFS:	1.41	254.50	14.14	14.14	14.14	 	GGBFS		2.89	 		7. Water 64.	.8		
Sand 1:	7.99	1311.62	72.87	73.59	73.59	Sar	nd Source	e 1	2.632	0.31%	2.96				
Coarse Aggregate 1:	8.16	1288.00	71.56	72.45	72.45	No 57 (Gravel So	urce 1	2.529	2.29%	7.14				
Coarse Aggregate 2:	2.59	407.00	22.61	23.00	23.00	No 8 G	Fravel So	urce I	2.522	2.88%	6.02				
Coarse Aggregate 3:	0.00	0.00	0.00	0.00					2.673	1.37%	5.52				
Coarse Aggregate 4:	0.00	0.00	0.00	0.00					2.604	2.43%	3.26				
Air: 7.00%	1.89	0.00	0.00	0.00											
Water:	3.67	229.00	12.72	10.72	10.72				1.00		[Strength Te	est Result	s
"+-Air: 0.50%													AGE	psi	Avg. psi
												Date	4x	8 CYLINDE	RS
Total:	27.00	3744.62	208.03	208.03									1 days	950	950
UW w/o Air:		149.13	149.13	149.13					Aggre	gate Moist	ures	08/12/09	1 days	950	550
										Free H ₂ O	Batch free		7 days	3240	3290
		A	DMIX INFC	RMATION						Content	H ₂ U (IDS.)	08/18/09	7 days	3340	
Туре	oz /cwt	oz /cy	ml /cy	batch ml	actual ml	Br	and / Nam	e	Sand:	0.99%	0.72		14 days	4680	4780
Air	0.52	2.6	78.3	4.3	4.3	 			CA 1	1.28%	0.90	08/25/09	14 days	4880	
WR Type A	4.00	20.4	602.1	33.5	33.5				CA 2	1.78%	0.39		28 days	6250	04.47
			ļ			ļ			CA 3	0.00%	0.00		28 days	6160	6147
									CA 4	0.00%	0.00	09/08/09	28 days	6030	
						+			vvaler		M/bold	10/06/00	56 days	6030	6795
F	LASTIC TES	T RESULT	S			OTHER	INFO		T /- 1120	Auueu	w/neiu	10/00/09	50 uays	0930	
Batch Time	9:29 AM	%	Air	7.50	Des.	w/c	0.4	450							
Sample Time	9:36 AM	Unit We	ight (pcf)	140.08	Act.	w/c	0.4	450							
		Yi	eld												
Slump, in.	4.25			1.49	Des.U	Jn.Wt.	138	3.69			ļ				
Mix Temp.	72.5	Initial s	et, min.	NA	Fine/C	Coarse	0.	77	 			Technic	ian who		
Air Temp.	12.1	Relativ	e Yield	0.990	вад н	actor	5	.4	l			conduct	ea tests:		
Matavial	Desire	Dualiat	M/ - i - le t	1/-1			A !	11. 10%	Duality C. "			Markahiliter	C		
Material	Design	Buckets	vveignt	VOI		ow Benn-	AIr	Un. Wt.	BUCKET Full		CE A-4	workability	Coarsenes	S MDOT!	
Cementitious 1:	14.14	1 1	14.14	23 614%	L	ow kange	6.50%	0 139.39	42.62		OF ACTUAL	57.8	With	IN MOOT L	imits

Material	Design	Buckets	Weight	Vol		Air	Un. Wt.	Bucket Full	V	/orkability	/ Coarseness
Cementitious 1:	14.14	1	14.14	22 61 40/	Low Range	6.50%	139.39	42.62	CF Actual	57.8	Within MDOT Limits
Cementitious 2:	14.14	1	14.14	23.014%	Design Un. Wt	7.00%	138.69	42.44	AWF upper limit	39.9	Positive
Sand #1:	73.59	2	36.79	43.624%	High Range	7.50%	138.00	42.27	AWF lower limit	32.1	Positive
Coarse Aggregate 1:	72.45	2	36.23	42.839%	Bucket Weight	7.77			AWF	34.0	Within MDOT Limits
Coarse Aggregate 2:	23.00	1	23.00	13.537%	Bucket Volume	0.250			CF upper limit	72.3	Positive
Coarse Aggregate 3:	0.00	1	0.00	0.000%	Bucket Full	42.79			CF lower limit	49.7	Positive
Coarse Aggregate 4:	0.00	1	0.00	0.000%	Theoretical Air	6.07			WF Actual	35.5	1

	Μ	DOT Sh	rinkage a	and Dura	ability - S	State Stud	y No. 216				Comm	ents / Not	es / Obser	vations
Customer:	MD	от	Project:			BCD 080	739		Lab #:	BCD				
MIX NUMBE	R Mix	16	Notes:		Type I -	KU Mix			Set #:	Mix 16				
Da	e: 4/23/2009		Mix Code:		f'c:	4,000 psi	Size(c.f.):	1.50	Factor:	0.06				
MIX DESIGN	INFO	cu. vd.	lab batch	lab batch	batch Wt.			Specific	absorp-					
Mater	ial Vol. (c.f.)	Wt (lbs)	Wt. (lbs.)	Wt. (lbs.)	(lbs.)	Mater	rial Source	Gravity	tion	Agg. FM				
Cement	1: 2.75	540.00	30.00	30.00	30.00	Cem	ent Type I	3.15						
Cement	2: 0.00		0.00	0.00							Slump 1 1/	2 to 3". 13 r	nl max for a	air. 44 ml
FIY AS	n: 0.00		0.00	0.00							max for wa	ter reducer	. Water 66.	5.4 pints
GGDF Sand	3. 0.00 1. 3.06	504.40	28.02	20.56	29.56	Sand	Source 2	2 644	0.38%	2.68	0.6 correct	ion. Sensor	3.	
Coarse Angregate	1. 1.58	262.00	14 56	29.50	14 59	No 4 Lime	stone Source 1	2.044	1.33%	7.86				
Coarso Aggrogato	2: 6.92	1165.00	64 72	64.02	64.02	No 57 Lime	estono Sourco 2	2 720	0.63%	6.02				
	2. 0.02	1105.00	04.72	04.92	04.92	NO 57 LIIIR	stone Source 2	2.759	0.0376	0.95				
Coarse Aggregate	3: 2.45	419.00	23.28	23.47	23.47			2.746	0.39%	5.41				
	4. 4.20	704.00	40.64	43.42	42.42		atoma Course 2	0 707	0.000/	2.00				
Air: 8 00	4. 4.30 9/ 2.16	0.00	40.61	0.00	43.42	NO 11 LIME	estone Source 2	2.121	0.62%	3.00				
Mat. 0.00	70 2.10	243.00	13 50	0.00	8 75			1.00				Strongth T	ost Rosult	e
" Air: 100	o/	240.00	10.00	0.75	0.70			1.00				AGE	nei	.5 Ava pei
T-AII. 1.00	/0	+										AOL	pai	Avg. psi
											Date	4x	8 CYLINDE	RS
Tot	al: 27.00	3864.40	214.69	214.69								1 days	2090	2100
UW w/o A	ir:	155.57	155.57	155.57	_			Aggr	egate Mois	stures	04/24/09	1 days	2110	2100
									Free H2O	Batch free		7 days	3970	3945
_		ADM		IATION					Content	H2O (lbs.)	04/30/09	7 days	3920	
Туре	oz /cwt	oz /cy	ml /cy	batch ml	actual ml	Brar	nd / Name	Sand:	5.50%	1.54		14 days	4500	4445
Air	1.46	7.9	233.2	13.0	13.0			CA 1	0.23%	0.03	05/07/09	14 days	4390	
WR Type A	4.96	26.8	792.1	44.0	44.0			CA 2	0.30%	0.19		28 days	4830	
								CA 3	0.81%	0.19		28 days	4850	4843
								CA 4	6.95%	2.81	05/21/09	28 days	4850	
		+						water		tinneia	06/19/00	56 days	4970	5180
	ASTIC TEST	RESULTS				OTHER I	NEO	+/- h20	Added	w/neiu	00/10/09	56 0ays	2280	
Batch Time	8.44 AM	×230213	Air	8 15	Des	w/c	0.450							
Sample Time	9:10 AM	Unit We	ight (pcf)	145.16	Act.	w/c	0.450							
			<u></u>											
		Yi	eld											
Slump, in.	2.25			1.48	Des.L	Jn.Wt.	143.13							
Mix Temp.	74.5	Initial s	set, min.	NA	Fine/C	Coarse	0.67				Technic	ian who		
Air Temp.	74.0	Relativ	/e Yield	0.986	Bag F	actor	5.7				conduct	ed tests:		

Material	Design	Buckets	Weight	Vol		Air	Un. Wt.	Bucket Fu	W	orkability	/ Coarseness
Cementitious 1:	30.00	1	30.00	24 509%	Low Range	7.00%	144.57	43.92	CF Actual	60.5	Within MDOT Limits
Cementitious 2:	0.00	1	0.00	24.390 /0	Design Un. Wt	8.00%	143.13	43.56	AWF upper limit	40.0	Positive
Sand #1:	29.56	2	14.78	16.369%	High Range	9.00%	141.71	43.21	AWF lower limit	32.0	Positive
Coarse Aggregate 1:	14.59	1	14.59	8.503%	Bucket Weight	7.78			AWF	35.3	Within MDOT Limits
Coarse Aggregate 2:	64.92	2	32.46	37.807%	Bucket Volume	0.250			CF upper limit	73.8	Positive
Coarse Aggregate 3:	23.47	1	23.47	13.598%	Bucket Full	44.07			CF lower limit	48.2	Positive
Coarse Aggregate 4:	43.42	1	43.42	23.723%	Theoretical Air	6.69			WF Actual	36.0	

		Μ	DOT Shi	rinkage a	and Dura	Ourability - State Study No. 216						Comm	ents / Not	es / Obser	vations
Custome	er:	MDC	DT	Project:			BCD 08073	39		Lab #:	BCD				
MIX I	NUMBER	Mix '	17	Notes:	Ту	pe I - MDC	OT Class AA			Set #:	Mix 17				
	Date:	4/28/2009		Mix Code:		f'c:	4,000 psi	Size(c.f.):	1.50	Factor:	0.06				
MIX D	ESIGN INF	0		Jab batch	Aujusteu	Actual lab			Specific	absorp-					
	Material	Vol. (c.f.)	Wt (lbs)	Wt. (lbs.)	Wt. (lbs.)	(lbs.)	Material	Source	Gravity	tion	Agg. FM				
C	Cement 1:	2.99	588.00	32.67	32.67	32.67	Cement	t Type I	3.15						
C	Cement 2:	0.00		0.00	0.00										
	Fly Ash:	0.00		0.00	0.00							Slump 2 1/	4 to 3 3/4. 3	8 ml max fo	or air. 48 ml
	GGBFS:	0.00	 	0.00	0.00							max for wa	iter reduce	. Water 73.	5. Sensor 3.
	Sand 1:	6.74	1111.19	61.73	64.25	64.25	Sand S	ource 2	2.644	0.38%	2.68				
Coarse Ago	gregate 1:	11.88	1871.00	103.94	104.72	104.72	No 57 Grav	el Source 2	2.523	2.22%	6.72				
Coarse Age	gregate 2:	0.00		0.00	0.00										
Coarse Ago	gregate 3:	0.00		0.00	0.00										
	,														
Coarse Ago	gregate 4:	0.00		0.00	0.00										
Air:	6.00%	1.62	0.00	0.00	0.00										
	Water:	3.77	235.20	13.07	9.78	9.78			1.00			;	Strength T	est Result	s
"+-Air:	0.50%												AGE	psi	Avg. psi
												Date	4)	8 CYLINDE	RS
	Total:	27.00	3805.39	211.41	211.41								1 days	2880	0705
UV	V w/o Air:		149.94	149.94	149.94	-			Aggr	egate Mois	stures	04/29/09	1 days	2650	2/05
						-				Free H2O	Batch free		7 days	4830	4940
			ADM	IX INFORM	ATION					Content	H2O (lbs.)	05/05/09	7 days	4850	4040
Туре		oz /cwt	oz /cy	ml /cy	batch ml	actual ml	Brand	Name	Sand:	4.09%	2.52		14 days	5260	E440
Air	ſ	0.52	3.1	90.4	5.0	5.0			CA 1	0.76%	0.77	05/12/09	14 days	5560	5410
WR Type	A	4.51	26.5	784.3	43.6	43.6			CA 2		0.00		28 days	5770	
									CA 3		0.00		28 days	5970	5793
									CA 4		0.00	05/26/09	28 days	5640	
									Water	Added/Wi	thheld		56 days	5930	5955
									+/- h2o	Added	W/held	06/23/09	56 days	5980	5555
	PLA	STIC TEST F	RESULTS			OTHER INFO									
Batch Tim	ne	12:10 PM	%	Air	6.75	Des.	w/c	0.400							
Sample Ti	me	12:18 PM	Unit We	ight (pcf)	141.00	0 Act. w/c 0.400									
			Yi	eld											
Slump, ir	า.	3.00			1.50	Des.L	In.VVt.	140.94							
Mix Temp	р.	75.1	Initial s	et, min.	NA	Fine/C	oarse	0.59				Technic	ian who		
Air Temp	D.	72.9	Relativ	e Yield	1.000	Bag F	actor	6.3				conduct	ed tests:		
										-					

Material	Design	Buckets	Weight	Vol		Air	Un. Wt.	3ucket Fu	W	orkability	/ Coarseness
Cementitious 1:	32.67	1	32.67	25.040%	Low Range	5.50%	141.65	43.19	CF Actual	60.6	Within MDOT Limits
Cementitious 2:	0.00	1	0.00	23.04070	Design Un. Wt	6.00%	140.94	43.02	AWF upper limit	40.0	Positive
Sand #1:	64.25	2	32.12	37.261%	High Range	6.50%	140.24	42.84	AWF lower limit	32.0	Positive
Coarse Aggregate 1:	104.72	2	52.36	62.739%	Bucket Weight	7.78			AWF	33.0	Within MDOT Limits
Coarse Aggregate 2:	0.00	1	0.00	0.000%	Bucket Volume	0.250			CF upper limit	69.6	Positive
Coarse Aggregate 3:	0.00	1	0.00	0.000%	Bucket Full	43.03			CF lower limit	52.4	Positive
Coarse Aggregate 4:	0.00	1	0.00	0.000%	Theoretical Air	5.96			WF Actual	32.4	

Customer: MDOT Project: BCD 080739 Lab #: BCD MIX NUMBER Mix 18 Notes: Type I - 25% C Ash - MDOT Class AA Set #: Mix 18 Date: 4/28/2009 Mix Code: fc: 4,000 psi Size(c.f.): 1.50 Factor: 0.06 MIX DESIGN INFO South interval Vol. (c.f.) Wr (the) Vit.(the) Vit
MIX NUMBER Mix 18 Notes: Type I - 25% C Ash - MDOT Class AA Set #: Mix 18 Date: 4/28/2009 Mix Code: fc:: 4,000 psi Size(c.f.): 1.50 Factor: 0.06 MIX DESIGN INFO Sob min Actual rate
Date: 4/28/2009 Mix Code: FC: 4,000 psi Size(c.f.): 1.50 Factor: 0.06 MIX DESIGN INFO Sob mix Sob mix Sob mix Sob mix Aduan au Aduan au Specific flow absorption Agg. FM Mix DeSiGN INFO 0.0 (c.f.) wtr (lbs.) 24.50 24.50 Cement 7:0 3.15
MIX DESIGN INFO Sob mix i aso mix i ab batch lab batch l
Material Vol. (c.f.) Wr. (lbs.) Wb. (lbs.) Wb. (lbs.) Wb. (lbs.) Material Source Gravity tion Agg. FM Cement 1: 2.24 441.00 24.50 24.50 Cement Type I 3.15
Cement 1: 2.24 441.00 24.50 24.50 Cement Type I 3.15 Image: Strength Test Results Cement 2: 0.00 0.00 0.00 0.00 Image: Strength Test Results Strength Test Results Cement 2: 0.00 0.00 0.00 0.00 Image: Strength Test Results Strength Test Results GGBFS: 0.00 0.00 0.00 Image: Strength Test Results Strength Test Results GGBFS: 0.00 0.00 0.00 Image: Strength Test Results Strength Test Results Coarse Aggregate 0.00 0.00 0.00 Image: Strength Test Results Strength Test Results
Cement 2: 0.00
Fly Ash: 0.89 147.00 8.17 8.17 8.17 Type C Fly Ash 2.64 Stand P / A to S 3.4. 46 Initial for Water GGBFS: 0.00 0.00 0.00 0.00
GGBFS: 0.00
Sand 1: 6.59 1087.35 60.41 62.87 62.87 Sand Source 2 2.644 0.38% 2.68 Coarse Aggregate 1: 11.88 1871.00 103.94 104.72 104.72 No 57 Gravel Source 2 2.523 2.22% 6.72 Coarse Aggregate 2: 0.00 <t< td=""></t<>
Coarse Aggregate 1: 11.88 18/1.00 103.94 104.72 104.72 No 57 Gravel Source 2 2.523 2.22% 6.72 Coarse Aggregate 2: 0.00 <
Coarse Aggregate 2: 0.00
Coarse Aggregate 3: 0.00
Coarse Aggregate 4: 0.00 </td
Coarse Aggregate 4: 0.00 </td
Air: 6.00% 1.62 0.00 <t< td=""></t<>
Water: 3.77 235.20 13.07 9.83 9.83 1.00 Strength Test Results
"+-Air: 0.50% AGE psi Avg. psi
Date 4x8 CYLINDERS
Total: 27.00 3781.55 210.09 210.09
LIW w(o Air: 149 00 149
ADMIX INFORMATION Content H20 (lbs.) 05/05/09 7 days 4100 3990
Type oz /cwt oz /cy ml /cy batch ml actual ml Brand / Name Sand: 4.09% 2.46 14 days 4270
Air 0.57 3.4 99.1 5.5 5.5 CA1 0.76% 0.77 05/12/09 14 days 4840 4555
WR Type A 2.00 11.8 347.8 19.3 19.3 CA2 0.00 28 days 5610
CA 3 0.00 28 days 5670 5620
CA 4 0.00 05/26/09 28 days 5580
Water Added/Withheld 56 days 6000 coos
+/- h2o Added W/held 06/23/09 56 days 6190
PLASTIC TEST RESULTS OTHER INFO
Batch Time 3:07 PM % Air 6.00 Des. w/c 0.400
Sample Time 3:20 PM Unit Weight (pcf) 139.28 Act. w/c 0.400
Yield
Slump, in. 4.25 1.51 Des.Un.Wt. 140.06
Mix Temp. 74.5 Initial set, min. NA Fine/Coarse 0.58 Technician who
Air Temp. 72.2 Relative Yield 1.006 Bag Factor 6.3 conducted tests:

Material	Design	Buckets	Weight	Vol		Air	Un. Wt. 3	Bucket Ful	W	orkability	/ Coarseness
Cementitious 1:	24.50	1	24.50	25 575%	Low Range	5.50%	140.76	42.97	CF Actual	60.7	Within MDOT Limits
Cementitious 2:	8.17	1	8.17	20.07576	Design Un. Wt	6.00%	140.06	42.79	AWF upper limit	40.0	Positive
Sand #1:	62.87	2	31.43	36.755%	High Range	6.50%	139.36	42.62	AWF lower limit	32.0	Positive
Coarse Aggregate 1:	104.72	2	52.36	63.245%	Bucket Weight	7.78			AWF	32.6	Within MDOT Limits
Coarse Aggregate 2:	0.00	1	0.00	0.000%	Bucket Volume	0.250			CF upper limit	67.7	Positive
Coarse Aggregate 3:	0.00	1	0.00	0.000%	Bucket Full	42.60			CF lower limit	54.3	Positive
Coarse Aggregate 4:	0.00	1	0.00	0.000%	Theoretical Air	6.52			WF Actual	31.9	

	М	DOT Sh	rinkage a	and Dura	Durability - State Study No. 216						Comm	ents / Not	es / Obse	rvations
Customer:	MDO	ОТ	Project:			BCD 08	0739		Lab #:	BCD				
MIX NUMBE	R Mix	19	Notes:		Тур	oe I			Set #:	Mix 19				
Dat	e: 5/5/2009		Mix Code:		f'c:	4,000 psi	Size(c.f.):	1.50	Factor:	0.06				
MIX DESIGN	NFO		Jab batch	Aujusteu	Actual lab			Specific	absorp-					
Materi	al Vol. (c.f.)	Wt (lbs)	Wt. (lbs.)	Wt. (lbs.)	(lbs.)	Mate	rial Source	Gravity	tion	Agg. FM				
Cement	1: 2.63	517.00	28.72	28.72	28.72	Cer	nent Type I	3.15						
Cement	2: 0.00	ļ	0.00	0.00	<u>i</u>	_		ļ	ļ					
Fly As	h: 0.00		0.00	0.00	_	_					Air 5.5 - 6.	5. Report sl	ump. Wate	r 71.0.
GGBF	S: 0.00		0.00	0.00							Sensor 3.			
Sand	1: 6.89	1136.52	63.14	65.53	65.53	San	d Source 2	2.644	0.38%	2.68				
Coarse Aggregate	1: 11.88	1871.00	103.94	106.01	106.01	NO 57 G	ravel Source 2	2.523	2.22%	6.72				
Coarse Aggregate	2: 0.00	+	0.00	0.00										
Coarse Aggregate	3: 0.00		0.00	0.00	_									
Coarse Aggregate	4: 0.00		0.00	0.00										
Air: 6.00	% 1.62	0.00	0.00	0.00		[<u> </u>	1					
Wate	er: 3.98	248.16	13.79	9.33	9.33			1.00				Strength T	est Resul	ts
"+-Air: 0.50	%											AGE	psi	Avg. psi
					Ī						Date	43	8 CYLINDI	ERS
Tota	al: 27.00	3772.68	209.59	209.59		-		-	-	•		1 days	2570	0500
UW w/o A	ir:	148.65	148.65	148.65	-			Aggr	egate Mois	stures	05/06/09	1 days	2610	2590
				•	-				Free H2O	Batch free		7 days	5190	E20E
_		ADM		IATION		_			Content	H2O (Ibs.)	05/12/09	7 days	5420	5305
Туре	oz /cwt	oz /cy	ml /cy	batch ml	actual ml	Bra	and / Name	Sand:	3.80%	2.39		14 days	5840	5645
Air	0.35	1.8	53.5	3.0	3.0	.		CA 1	2.03%	2.06	05/19/09	14 days	5450	
WR Type A	4.00	20.7	611.6	34.0	34.0	 		CA 2		0.00	-	28 days	6450	
			 			 		CA 3		0.00		28 days	6060	6363
						 		CA 4	A -1 -11/0.0/5	0.00	06/02/09	28 days	6580	
					+			water			00/20/00	56 days	6560	6815
D	ASTIC TEST		i	i			INFO	+/- n20	Added	w/neiu	00/30/00	56 0ays	7070	
Batch Time	10:46 AM	<u>«</u>	Δir	6 50	Des	w/c	0.480		<u>i</u>		-			
Sample Time	11:00 AM	Unit We	eight (pcf)	140 80	Act	. w/c	0.480			Ì				
			<u></u>							}				
		Y	ield											
Slump, in.	3.25			1.49	Des.L	Jn.Wt.	139.73							
Mix Temp.	74.8	Initial s	set, min.	NA	Fine/0	Coarse	0.61				Technic	ian who		
Air Temp.	73.3	Relativ	ve Yield	0.992	Bag F	Factor	5.5				conduct	ed tests:		
Material	Design	Buckets	Weight	Vol			Air Un. Wt.	Bucket Fu			Workability	/ Coarsene	SS	

Material	Design	Buckets	Weight	Vol		Air	Un. Wt.	Bucket Ful	v	/orkability	/ Coarseness
Cementitious 1:	28.72	1	28.72	24 4710/	Low Range	5.50%	140.43	42.90	CF Actual	60.5	#NUM!
Cementitious 2:	0.00	1	0.00	24.471/0	Design Un. Wt	6.00%	139.73	42.72	AWF upper limit	40.0	Positive
Sand #1:	65.53	2	32.77	37.789%	High Range	6.50%	139.03	42.55	AWF lower limit	32.0	Positive
Coarse Aggregate 1:	106.01	2	53.00	62.211%	Bucket Weight	7.79			AWF	31.6	Out of MDOT Limits
Coarse Aggregate 2:	0.00	1	0.00	0.000%	Bucket Volume	0.250			CF upper limit	#NUM!	Negative Under Radical
Coarse Aggregate 3:	0.00	1	0.00	0.000%	Bucket Full	42.99			CF lower limit	#NUM!	Negative Under Radical
Coarse Aggregate 4:	0.00	1	0.00	0.000%	Theoretical Air	5.28			WF Actual	32.8	

	М	DOT Sh	rinkage	and Dura	ability - S	State Stud	ly No. 216				Comm	ents / Not	es / Obsei	vations
Customer:	MD	ОТ	Project:			BCD 08	0739		Lab #:	BCD				
MIX NUMB	ER Mix 2	20.1	Notes:		Type I - 2	5% C Ash			Set #:	Mix 20.1				
Da	ate: 5/12/2009		Mix Code:		f'c:	4,000 psi	Size(c.f.):	1.50	Factor:	0.06				
MIX DESIGN	INFO		SSD mix	Aujusteu	Actual lab			Specific	absorp-					
Mate	rial Vol. (c.f.)	Wt (lbs)	Wt. (lbs.)	Wt. (lbs.)	(lbs.)	Mate	rial Source	Gravity	tion	Agg. FM				
Cemen	t 1: 1.94	380.44	21.14	21.14	21.14	Cen	nent Type I	3.15]					
Cemen	t 2: 0.00		0.00	0.00	<u> </u>	İ				<u> </u>	A:	Demont O		
Fly A	sh: 0.77	126.81	7.04	7.04	7.04	Тур	e C Fly Ash	2.64		_	Air 5.5 - 6.5 between c'	and 4 Wa	ter 68 Roll	a de ormotor
GGBI	S: 0.00		0.00	0.00	_	.			<u> </u>	ļ	Twice.	, and 4. 110	101 00. 1001	ermeter
Sanc	11: 6.89	1136.51	63.14	65.39	65.39	San	d Source 2	2.644	0.38%	2.68				
Coarse Aggregate	e 1: 11.88	1871.00	103.94	105.82	105.82	No 57 G	ravel Source 2	2.523	2.22%	6.72				
Coarse Aggregate	2: 0.00		0.00	0.00]					
Coarse Aggregate	e 3: 0.00		0.00	0.00										
				0.00										
Coarse Aggregate	e 4: 0.00		0.00	0.00		ļ				ļ				
Air: 6.0	0% 1.62	0.00	0.00	0.00	L									
Wat	ter: 3.90	243.48	13.53	9.41	9.41	 		1.00	į			Strength T	est Resul	ts
"+-Air: 0.5	0%	L										AGE	psi	Avg. psi
											Date	43	8 CYLINDE	RS
То	tal: 27.00	3758.24	208.79	208.79		•		C	·	•		1 days	1240	1200
UW w/o	Air:	148.08	148.08	148.08				Aggr	egate Mois	stures	05/13/09	1 days	1320	1200
									Free H2O	Batch free		7 days	3990	4020
		ADM	IX INFORM	IATION					Content	H2O (lbs.)	05/19/09	7 days	4070	4030
Туре	oz /cwt	oz /cy	ml /cy	batch ml	actual ml	Bra	nd / Name	Sand:	3.57%	2.25		14 days	4880	4795
Air	0.36	1.8	54.0	3.0	3.0			CA 1	1.84%	1.87	05/26/09	14 days	4690	4/00
WR Type A	4.00	20.3	600.1	33.3	33.3	İ		CA 2		0.00		28 days	5660	
					1			CA 3		0.00		28 days	5820	5697
					1			CA 4		0.00	06/09/09	28 days	5610	
								Water	Added/W	ithheld		56 days	6300	6070
				<u> </u>	1	1		+/- h2o	Added	W/held	07/07/09	56 days	5840	6070
	PLASTIC TEST I	RESULTS			1	OTHER	NFO		1					
Batch Time	9:44 AM	%	Air	5.25	5 Des. w/c 0.480									
Sample Time	9:52 AM	Unit We	eight (pcf)	140.80	Act	. w/c	0.480							
Slump, in.	4.75	Yi	ield	1.48	Des.l	Jn.Wt.	139.19							
Mix Temp.	73.3	Initial s	set, min.	NA	Fine/C	Coarse	0.61				Technic	ian who		
Air Temp.	72.2	Relativ	ve Yield	0.989	Bag I	Factor	5.4			<u> </u>	conduct	ed tests:		
Material	Design	Buckets	Weight	Vol			Air Un Wt	Bucket Eu			Workability	/ Coarsene	ss	

Cementitious 1: 21.14 1 21.14	Material	Design	Buckets	Weight	Vol		Air	Un. Wt. 3	ucket Fu	W	/orkability	/ Coarseness
Cementitious 2: 7.04 1 7.04 24.471% Design Un. Wt 6.00% 139.19 42.59 AWF upper limit 40.0 Positive Sand #1: 65.39 2 32.69 37.789% High Range 6.50% 138.50 42.42 AWF upper limit 32.0 Positive Coarse Aggregate 1: 105.82 2 52.91 62.211% Bucket Weight 7.79 AWF 10wer limit 32.0 Positive Coarse Aggregate 2: 0.00 1 0.00 0.000% Bucket Volume 0.250 CF upper limit #NUM! Negative Under Radical Coarse Aggregate 3: 0.00 1 0.00 0.000% Bucket Full 42.99 CF lower limit #NUM! Negative Under Radical	Cementitious 1:	21.14	1	21.14	24 471%	Low Range	5.50%	139.89	42.76	CF Actual	60.5	#NUM!
Sand #1: 65.39 2 32.69 37.789% High Range 6.50% 138.50 42.42 AWF lower limit 32.0 Positive Coarse Aggregate 1: 105.82 2 52.91 62.211% Bucket Weight 7.79 AWF lower limit 32.0 Positive Coarse Aggregate 2: 0.00 1 0.00 0.000% Bucket Volume 0.250 CF upper limit #NUM! Negative Under Radical Coarse Aggregate 3: 0.00 1 0.00 Coarse Aggregate CF lower limit #NUM! Negative Under Radical	Cementitious 2:	7.04	1	7.04	24.47170	Design Un. Wt	6.00%	139.19	42.59	AWF upper limit	40.0	Positive
Coarse Aggregate 1: 105.82 2 52.91 62.211% Bucket Weight 7.79 AWF 31.3 Out of MDOT Limits Coarse Aggregate 2: 0.00 1 0.00 0.000% Bucket Volume 0.250 CF upper limit #NUM! Negative Under Radical Coarse Aggregate 3: 0.00 1 0.00 0.000% Bucket Full 42.99 CF lower limit #NUM! Negative Under Radical	Sand #1:	65.39	2	32.69	37.789%	High Range	6.50%	138.50	42.42	AWF lower limit	32.0	Positive
Coarse Aggregate 2: 0.00 1 0.00 0.000% Bucket Volume 0.250 CF upper limit #NUM! Negative Under Radical Coarse Aggregate 3: 0.00 1 0.00 0.000% Bucket Full 42.99 CF lower limit #NUM! Negative Under Radical	Coarse Aggregate 1:	105.82	2	52.91	62.211%	Bucket Weight	7.79			AWF	31.3	Out of MDOT Limits
Coarse Aggregate 3: 0.00 1 0.000 Bucket Full 42.99 CF lower limit #NUM! Negative Under Radical	Coarse Aggregate 2:	0.00	1	0.00	0.000%	Bucket Volume	0.250			CF upper limit	#NUM!	Negative Under Radical
	Coarse Aggregate 3:	0.00	1	0.00	0.000%	Bucket Full	42.99			CF lower limit	#NUM!	Negative Under Radical
Coarse Aggregate 4: 0.00 1 0.000% Theoretical Air 4.92 WF Actual 32.8	Coarse Aggregate 4:	0.00	1	0.00	0.000%	Theoretical Air	4.92			WF Actual	32.8	

	М	DOT Sh	rinkage	e and Durability - State Study No. 216							Comm	ents / Note	es / Obse	rvations	
Customer:	MDC	DT	Project:			BCD 0	30739			Lab #:	BCD				
MIX NUMBER	R Mix :	21	Notes:		Type I - 2	5% F Ash				Set #:	Mix 21				
Date	5/5/2009		Mix Code:		f'c:	4,000 psi		Size(c.f.):	1.50	Factor:	0.06				
MIX DESIGN IN	IFO		lab batch	lab batch	hatch Wt				Specific	absorp-					
Materia	Vol. (c.f.)	Wt (lbs)	Wt. (lbs.)	Wt. (lbs.)	(lbs.)	Mat	erial Sour	ce	Gravity	tion	Agg. FM				
Cement 1	: 1.90	372.68	20.70	20.70	20.70	Ce	ment Type	I	3.15						
Cement 2	: 0.00	<u> </u>	0.00	0.00	<u> </u>	[
Fly Ash	: 0.89	124.23	6.90	6.90	6.90	Ту	pe F Fly As	h	2.24			Air 5.5 - 6.5	5. Report slu	ımp. W	ater 71.0
GGBFS	: 0.00	ļ	0.00	0.00	_					ļ		Sensor 4			
Sand 1	: 6.89	1136.51	63.14	65.53	65.53	Sa	nd Source	2	2.644	0.38%	2.68				
Coarse Aggregate 1	: 11.88	1871.00	103.94	106.01	106.01	No 57 (Gravel So	urce 2	2.523	2.22%	6.72				
Coarse Aggregate 2	: 0.00		0.00	0.00											
Coarse Aggregate 3	: 0.00		0.00	0.00	[
	1	1	T	0.00	1										
Coarse Aggregate 4	: 0.00		0.00	0.00											
Air: 6.00%	1.62	0.00	0.00	0.00		[
Water	: 3.82	238.52	13.25	8.80	8.80				1.00			5	Strength To	est Resu	lts
"+-Air: 0.50%			T										AGE	psi	Avg. psi
		İ	†		†										
												Date	4x	8 CYLIND	ERS
Total	: 27.00	3742.94	207.94	207.94									1 days	1470	1505
UW w/o Air	:	147.48	147.48	147.48					Aggr	egate Mois	stures	05/06/09	1 days	1540	1303
										Free H2O	Batch free		7 days	3750	3850
		ADM	IX INFORM	IATION						Content	H2O (lbs.)	05/12/09	7 days	3950	
Туре	oz /cwt	oz /cy	ml /cy	batch ml	actual ml	Bi	and / Nam	e	Sand:	3.80%	2.39		14 days	4400	4680
Air	0.91	4.5	133.7	7.4	7.4	[CA 1	2.03%	2.06	05/19/09	14 days	4960	4000
WR Type A	4.00	19.9	587.8	32.7	32.7	ļ 			CA 2		0.00		28 days	5270	
		<u> </u>	<u> </u>		<u> </u>	l			CA 3		0.00		28 days	5350	5303
			L		<u> </u>				CA 4		0.00	06/02/09	28 days	5290	
		<u> </u>	<u> </u>		<u> </u>	l			Water	Added/Wi	thheld		56 days	6130	6035
									+/- h2o	Added	W/held	06/30/09	56 days	5940	
PL	ASTIC TEST F	RESULTS				OTHER	INFO								
Batch Time	12:56 PM	%	Air	6.00	Des	. W/C	0.4	80							
Sample Time	1:11 PM	Unit We	ight (pcf)	141.84	Act.	. W/C	0.4	80			 				
			-1-1												
0 1		Yi Yi	eld				400	~~							
Slump, in.	3.25			1.47	Des.U	Jn.Wt.	138	.63							
Mix Temp.	73.9	Initial s	et, min.	NA	Fine/Coarse 0.61					Technic	ian who	GF	&SK		
Air Temp.	73.4	Relativ	/e Yield	0.977	Bag I	actor	5.	3				conduct	ed tests:		
Matarial	Desim	Dualist	Mainh	1/-1	1			11 146		-		A / a who a la 11**	0	-	
Material	Design	Buckets	Weight	Vol	<u> </u>		Air	Un. Wt.	Jucket Fu		05 4-4-1	workability	/ Coarsenes	S	
Cementitious 1	: 20.70	1	20.70	24.471%	<u>-</u>	ow kange	5.50%	139.32	42.62		CF ACTUAL	60.5		#NUM!	

Material	Design	Buckets	Weight	Vol		Air	Un. Wt.	Bucket Ful	v	/orkability /	Coarseness
Cementitious 1:	20.70	1	20.70	24 4710/	Low Range	5.50%	139.32	42.62	CF Actual	60.5	#NUM!
Cementitious 2:	6.90	1	6.90	24.47170	Design Un. Wt	6.00%	138.63	42.45	AWF upper limit	40.0	Positive
Sand #1:	65.53	2	32.76	37.789%	High Range	6.50%	137.94	42.27	AWF lower limit	32.0	Positive
Coarse Aggregate 1:	106.01	2	53.00	62.211%	Bucket Weight	7.79			AWF	31.0	Out of MDOT Limits
Coarse Aggregate 2:	0.00	1	0.00	0.000%	Bucket Volume	0.250			CF upper limit	#NUM!	Negative Under Radical
Coarse Aggregate 3:	0.00	1	0.00	0.000%	Bucket Full	43.25			CF lower limit	#NUM!	Negative Under Radical
Coarse Aggregate 4:	0.00	1	0.00	0.000%	Theoretical Air	3.82			WF Actual	32.8	

		М	DOT Shi	rinkage a	and Dura	ability - S	State Stu	6				Comm	ents / Not	es / Obse	rvations	
Customer:		MDC	DT	Project:			BCD 08	30739			Lab #:	BCD				
MIX NUI	MBER	Mix	22	Notes:	T	ype I - 50	% GGBFS				Set #:	Mix 22				
	Date:	5/7/2009		Mix Code:		f'c:	4,000 psi	Siz	ze(c.f.):	1.50	Factor:	0.06				
MIX DES	ign inf	0	cu. vd.	lab batch	lab batch	batch Wt.				Specific	absorp-					
M	laterial	Vol. (c.f.)	Wt (lbs)	Wt. (lbs.)	Wt. (lbs.)	(lbs.)	Mat	erial Source)	Gravity	tion	Agg. FM				
Cerr	nent 1:	1.29	253.95	14.11	14.11	14.11	Ce	ment Type I		3.15						
Cerr	nent 2:	0.00	 	0.00	0.00	_							Air 5 5% - f	6% Reno	t Slumn N	Nater 69
FI	y Ash:	0.00	252.05	0.00	0.00	4444		00050		0.00			Sensor 3. (Cylinder bre	ak change	es - (1) 14-
G	and 1:	6.90	203.90	62.14	14.11	14.11		GGBF5		2.89	0.28%	2.69	day & (1) 5	6 day.	-	
Coarse Angreo	anu i. iate 1:	11.88	1871.00	103.14	105.30	105.30	No 57 (Gravel Source 2	2	2.044	2 22%	2.00				
Coarse Aggreg	Jato 1.	0.00	1071.00	0.00	0.00	100.21	1007			2.020	2.2270	0.72				
Coarse Aggreg	jale Z:	0.00		0.00	0.00											
Coarse Aggreg	gate 3:	0.00		0.00	0.00											
Coarse Aggreo	gate 4:	0.00		0.00	0.00											
Air:	6.00%	1.62	0.00	0.00	0.00											
١	Water:	3.91	243.79	13.54	9.84	9.84				1.00			5	Strength T	est Resul	ts
"+-Air:	0.50%													AGE	psi	Avg. psi
													Date	4x	8 CYLINDI	ERS
	Total:	27.00	3759.22	208.85	208.85		•							1 days	730	650
UW w	//o Air:		148.12	148.12	148.12					Aggr	egate Mois	stures	05/08/09	1 days	570	050
											Free H2O	Batch free		7 days	3200	3145
			ADM		ATION						Content	H2O (lbs.)	05/14/09	7 days	3090	0140
Туре		oz /cwt	oz /cy	ml /cy	batch ml	actual ml	Br	and / Name		Sand:	3.88%	2.44		14 days	4710	4710
Air		0.36	1.8	54.1	3.0	3.0	ļ			CA 1	1.24%	1.26	05/21/09	14 days		
WR Type A		4.00	20.3	600.8	33.4	33.4				CA 2		0.00		28 days	5920	
			L	 		 	 			CA 3		0.00		28 days	6160	5917
			ļ	k						CA 4		0.00	06/04/09	28 days	5670	
										Water	Added/Wi	tnneid	07/02/00	56 days	5970	5970
	DI A									+/- n20	Added	w/neid	07/02/09	56 days		
Batch Time	1 27	9.04 AM	%	Air	5 50	Des	w/c	0 480								
Sample Time		9:15 AM	Unit We	iaht (pcf)	141.96	Act	. w/c	0.480								
	†			· <u>J··· (F···)</u>	141.00											
			Yi	eld												
Slump, in.		5.75			1.47	Des.l	Jn.Wt.	139.23	3							
Mix Temp.		73.6	Initial s	et, min.	NA	Fine/0	Coarse	0.61					Technic	ian who		
Air Temp.		72.9	Relativ	ve Yield	0.981	Bag I	Factor	5.4					conduct	ed tests:		
Material		Design	Buckets	Weight	Vol			Air U	In. Wt.	Bucket Fu			Norkability	/ Coarsene	ss	
Cementiti	ious 1:	14.11	1	14.11	24 471%	L	ow Range	5.50%	139.93	42.77		CF Actual	60.5		#NUM!	

Material	Design	Buckets	Weight	Vol		Air	Un. Wt. 3	Sucket Fu	Ň	/orkability	/ Coarseness
Cementitious 1:	14.11	1	14.11	24 4710/	Low Range	5.50%	139.93	42.77	CF Actual	60.5	#NUM!
Cementitious 2:	14.11	1	14.11	24.47170	Design Un. Wt	6.00%	139.23	42.60	AWF upper limit	40.0	Positive
Sand #1:	65.58	2	32.79	37.790%	High Range	6.50%	138.54	42.42	AWF lower limit	32.0	Positive
Coarse Aggregate 1:	105.21	2	52.60	62.210%	Bucket Weight	7.79			AWF	31.3	Out of MDOT Limits
Coarse Aggregate 2:	0.00	1	0.00	0.000%	Bucket Volume	0.250			CF upper limit	#NUM!	Negative Under Radical
Coarse Aggregate 3:	0.00	1	0.00	0.000%	Bucket Full	43.28			CF lower limit	#NUM!	Negative Under Radical
Coarse Aggregate 4:	0.00	1	0.00	0.000%	Theoretical Air	4.16			WF Actual	32.8	

MDOT Shrinkage and Durability - State Study No. 216											Comm	ents / Note	s / Obsei	vations	
Custome	er:	MDC	DT	Project:			BCD 0807	39		Lab #:	BCD				
MIX	NUMBER	Mix 2	3.1	Notes:	Type GU						Mix 23.1				
	Date:	8/6/2009		Mix Code:		f'c:	4,000 psi	Size(c.f.):	1.50	Factor:	0.06				
MIX D	MIX DESIGN INFO		cu. vd.	lab batch	lab batch	batch Wt.		Specific	absorp-						
	Material		Wt (lbs)	Wt. (lbs.)	Wt. (lbs.)	(lbs.)	Materia	Source	Gravity	tion	Agg. FM				
(Cement 1:	2.65	514.37 28.58 28.58 28.58 Cement Type GU 3.11												
(Cement 2:		¦	0.00	0.00										
	Fly Ash:	0.00	 	0.00	0.00						Air 5.5% - 6	6.6%. Report	3%. Report Slump. Water 65.0°F		
	GGBFS:	0.00	1126 50	0.00	0.00	64.64	Sond S	ouroo 2	2644	0.200/	2.69	Sensor 6.			
Coarse Ag	Sanu I.	0.09	1871.00	103.04	105 50	105 50	No 57 Grav	ource 2	2.044	0.30%	2.00	-			
Coarse Ag	jiegale 1.	11.00	1071.00	103.94	105.50	105.50	NO 57 GIA	er Source z	2.525	2.22 /0	0.72	-			
Coarse Age	gregate 2:	0.00		0.00	0.00							-			
Coarse Age	gregate 3:	0.00	 	0.00	0.00							-			
Coarse Age	gregate 4:	0.00		0.00	0.00										
Air:	6.00%	1.62	0.00	0.00	0.00										
	Water:	3.96	246.90	13.72	10.66	10.66			1.00			5	Strength Te	est Resul	ts
"+-Air:	0.50%												AGE	psi	Avg. psi
												Date	4x	B CYLINDE	RS
	Total:	27.00	3768.77	209.38	209.38	1							1 days	2030	0000
U\	N w/o Air:		148.49	148.49	148.49				Aggre	egate Mois	stures	08/07/09	1 days	2130	2080
			÷	÷						Free H2O	Batch free		7 days	4870	4000
			ADM	IX INFORM	IATION					Content	H2O (lbs.)	08/13/09	7 days	4930	4900
Туре		oz /cwt	oz /cy	ml /cy	batch ml	actual ml	Brand	/ Name	Sand:	2.39%	1.50		14 days	5580	5625
Air		0.36	1.9	54.8	3.0	3.0			CA 1	1.53%	1.56	08/20/09	14 days	5670	0020
WR Type	A	4.00	20.6	608.5	33.8	33.8			CA 2		0.00	-	28 days	6310	
			ļ	ļ					CA 3		0.00	-	28 days	5870	6127
									CA 4		0.00	09/03/09	28 days	6200	
				_					Water	Added/Wi	thheld		56 days	6470	6560
									+/- h2o	Added	W/held	10/01/09	56 days	6650	
Potoh Ti-		ASTIC TEST H		Air		Dee		0.480							
Sanch Ti	mo	11:52 AM	% Linit Wo	Alf	6.00	Des.	. w/c	0.480				-			
Sample n		12.00 FW	Offic we	igni (pci)	142.04	Aci.		0.400							
			Yi	eld											
Slump, i	n.	4.25			1.47	Des.L	Jn.Wt.	139.58							
Mix Tem	p.	73.7	Initial s	set, min.	NA	Fine/C	Coarse	0.61				Technic	ian who		
Air Tem	Э.	74.9	Relativ	/e Yield	0.983	Bag F	actor	5.5				conduct	ed tests:		
Materia		Design	Buckets	Weight	Vol		A	ir Un. Wt.	3ucket Fu			Workability	/ Coarsenes	s	
0	1111 4	00 50		00.50			Dennel 5	500/1 440.00	10.00		OF A street				

Material	Design	Buckets	Weight	Vol		Air	Un. Wt.	3ucket Ful	Workability / Coarseness				
Cementitious 1:	28.58	1	28.58	24 4710/	Low Range	5.50%	140.29	42.86	CF Actual	60.5	#NUM!		
Cementitious 2:	0.00	1	0.00	24.471/0	Design Un. Wt	6.00%	139.58	42.69	AWF upper limit	40.0	Positive		
Sand #1:	64.64	2	32.32	37.789%	High Range	6.50%	138.89	42.51	AWF lower limit	32.0	Positive		
Coarse Aggregate 1:	105.50	2	52.75	62.211%	Bucket Weight	7.79			AWF	31.5	Out of MDOT Limits		
Coarse Aggregate 2:	0.00	1	0.00	0.000%	Bucket Volume	0.250			CF upper limit	#NUM!	Negative Under Radical		
Coarse Aggregate 3:	0.00	1	0.00	0.000%	Bucket Full	43.30			CF lower limit	#NUM!	Negative Under Radical		
Coarse Aggregate 4:	0.00	1	0.00	0.000%	Theoretical Air	4.35			WF Actual	32.8			

	MDOT Shrinkage and Durability - State Study No. 216											Comm	ents / Not	es / Obsei	rvations
Customer:		MDO	ЭТ	Project:			BCD 080739			Lab #:	BCD				
MIX NU	JMBER	Mix	24	Notes:	T	ype GU -	25% C Ash			Set #:		4			
	Date:	5/12/2009		Mix Code:		f'c:	4,000 psi	Size(c.f.):	1.50	Factor:	0.06				
MIX DE	MIX DESIGN INFO		cu vd Wt	lab batch	lah hatch	Actual lab			Specific	absorp-					
	Material Vol. (c.f.)		(lbs)	Wt. (lbs.)	Wt. (lbs.)	(lbs.) Material Source		Gravity	tion	Agg. FM					
Ce	ment 1:	1.95	379.01	21.06	21.06	21.06	Cement Typ	e GU	3.11						
Ce	Cement 2: 0.00		0.00	0.00	0.00										
	Fly Ash: 0.77		126.34	7.02	7.02	7.02 Type C Fly Ash		2.64			- Report Slump, Air 5.5 to 6.5 %				
(GBFS:	0.00		0.00	0.00										
	Sand 1:	6.89	1136.50	63.14	65.38	65.38	Sand Sou	rce 2	2.644	0.38%	2.68				
Coarse Aggre	egate 1:	11.88	1871.00	103.94	105.82	105.82	NO 57 Gravel	Source 2	2.523	2.22%	6.72				
Coarse Aggre	egate 2:	0.00		0.00	0.00										
Coarse Aggre	egate 3:	0.00		0.00	0.00										
Coarse Aggre	egate 4:	0.00		0.00	0.00										
Air:	6.00%	1.62	0.00	0.00	0.00										
	Water:	3.89	242.57	13.48	9.36	9.36			1.00				Strength T	est Resul	ts
"+-Air:	0.50%												AGE	psi	Avg. psi
											Date 4x8 CYLINDERS		RS		
	Total:	27.00	3755.42	208.63	208.63	[1 days	1190	1215
UW	w/o Air:		147.97	147.97	147.97				Aggro	egate Mois	stures	05/13/09	1 days	1240	1215
										Free H2O	Batch free		7 days	4570	4645
			ADMI	X INFORM	ATION					Content	H2O (lbs.)	05/19/09	7 days	4720	
Туре		oz /cwt	oz /cy	ml /cy	batch ml	actual ml	Brand / Na	ame	Sand:	3.57%	2.25		14 days	5530	5505
Air		0.36	1.8	53.8	3.0	3.0	ļ		CA 1	1.84%	1.87	05/26/09	14 days	5480	
WR Type A	\	4.00	20.2	597.8	33.2	33.2	¦ }		CA 2		0.00		28 days	6070	
			 						CA 3		0.00		28 days	6110	6093
							<u> </u>		CA 4		0.00	06/09/09	28 days	6100	
			 				 		Water	Added/Wi	thheid	07/07/00	56 days	6980	6590
	DI /					1			+/- h20	Added	w/neid	07/07/09	56 days	6200	
Batch Time		11·40 AM	KE30E13 %	Air	5 50	Des		0 480							
Sample Tim	e	11:49 AM	Unit Wei	aht (pcf)	141 44	Act	w/c) 480			1				
				<u>3 (F)</u>							}				
			Yie	eld											
Slump, in.		6.75			1.48	Des.l	Jn.Wt. 1	39.09							
Mix Temp.		73.3	Initial s	et, min.	NA	Fine/0	Coarse	0.61				Technic	ian who		
Air Temp.	1	72.0	Relativ	e Yield	0.983	Bag	actor	5.4				conduct	ed tests:		
Material		Design	Buckets	Weight	Vol		Air	Un. Wt.	3ucket Fu		1	Norkability	/ Coarsene	ss	
Cement	itious 1:	21.06	1	21.06	24 4710/	L	ow Range 5.50	% 139.79	42.74		CF Actual	60.5		#NUM!	

Material	Design	Buckets	Weight	Vol		Air	Un. Wt. 3ucket Ful		N	/orkability /	Coarseness				
Cementitious 1:	21.06	1	21.06	24 471%	Low Range	5.50%	139.79	42.74	CF Actual	60.5	#NUM!				
Cementitious 2:	7.02	1	7.02	24.47170	Design Un. Wt	6.00%	139.09	42.56	AWF upper limit	40.0	Positive				
Sand #1:	65.38	2	32.69	37.789%	High Range	6.50%	138.40	42.39	AWF lower limit	32.0	Positive				
Coarse Aggregate 1:	105.82	2	52.91	62.211%	Bucket Weight	7.79			AWF	31.3	Out of MDOT Limits				
Coarse Aggregate 2:	0.00	1	0.00	0.000%	Bucket Volume	0.250			CF upper limit	#NUM!	Negative Under Radical				
Coarse Aggregate 3:	0.00	1	0.00	0.000%	Bucket Full	43.15			CF lower limit	#NUM!	Negative Under Radical				
Coarse Aggregate 4:	0.00	1	0.00	0.000%	Theoretical Air	4.41			WF Actual	32.8					
		Μ	DOT Sh	rinkage	and Dur	ability -	State Stud	ly No. 216				Comm	ents / Not	es / Obse	rvations
-----------	--------------	-------------	---------------	------------	-----------------------	------------	------------	---------------	------------------	-------------	------------	---------------	-------------	-------------	----------
Custom	ner:	MDC	T	Project:			BCD 080	0739		Lab #:	BCD				
MIX	(NUMBER	Mix	25	Notes:	Т	ype GU -	25% F Ash			Set #:	Mix 25	1			
	Date:	5/14/2009		Mix Code:		f'c:	4,000 psi	Size(c.f.)	: 1.50	Factor:	0.06				
MIX	DESIGN INF	0		Jab batch	Aujusteu Jab batch	Actual lab			Specific	Agg. absorp		1			
	Material	Vol. (c.f.)	Wt (lbs)	Wt. (lbs.)	Wt. (lbs.)	(lbs.)	Mate	rial Source	Gravity	tion	Agg. FM				
	Cement 1:	1.91	371.31	20.63	20.63	20.63	Ceme	nt Type GU	3.11						
	Cement 2:	0.00		0.00	0.00	<u>i</u>			. .	ļ					
	Fly Ash:	0.89	123.77	6.88	6.88	6.88	Туре	F Fly Ash	2.24			Report Slu	mp. Air 5.5	to 6.5 %. S	ensor 3.
	GGBFS:	0.00	4400.50	0.00	0.00	05.44				0.000/	0.00				
Cooroo Ao	Sand 1:	6.89	1136.52	63.14	65.44	65.44	Sanc	Source 2	2.644	0.38%	2.68				
Coarse Ag	ggregate 1.	11.00	1871.00	103.94	104.87	104.87	NO 57 G	aver Source 2	2.523	2.22%	0.72				
Coarse Ag	ggregate 2:	0.00		0.00	0.00					+					
Coarse Ag	ggregate 3:	0.00		0.00	0.00	_				ļ					
Coarse Ag	ggregate 4:	0.00		0.00	0.00										
Air:	6.00%	1.62	0.00	0.00	0.00										
	Water:	3.81	237.64	13.20	9.97	9.97			1.00				Strength T	est Resul	ts
"+-Air:	0.50%												AGE	psi	Avg. psi
												Date	4x	8 CYLINDI	ERS
	Total:	27.00	3740.24	207.79	207.79		•			·			1 days	1390	1405
U	JW w/o Air:		147.37	147.37	147.37				Agg	regate Mois	tures	05/15/09	1 days	1420	1405
				•						Free H2O	Batch free		7 days	3650	3700
			ADM		IATION					Content	H2O (lbs.)	05/21/09	7 days	3750	0/00
Туре)	oz /cwt	oz /cy	ml /cy	batch ml	actual ml	Bra	nd / Name	Sand:	3.66%	2.30		14 days	4340	4375
Air		0.80	4.0	117.1	6.5	6.5			CA 1	0.91%	0.93	05/28/09	14 days	4410	
WR Typ	e A	4.00	19.8	585.7	32.5	32.5			CA 2		0.00		28 days	5260	
						_	ļ		CA 3		0.00		28 days	4570	5010
							ļ		CA 4		0.00	06/11/09	28 days	5200	
						+			wate	r Added/wit	nneia	07/00/00	56 days	6480	6255
	DI /	STIC TEST		i				NEO	+/- n20	Added	w/neiu	07/09/09	56 days	6030	
Batch Ti	ime l	9.18 AM	<u>100113</u>	Air	5 50	Des		0.480		i					
Sample 1	Time	9:27 AM	Unit We	iaht (pcf)	140.68	Act	. w/c	0.480	-						
				. <u></u>											
			Yi	eld											
Slump,	in.	8.00			1.48	Des.U	Jn.Wt.	138.53							
Mix Ten	np.	73.9	Initial s	et, min.	NA	Fine/0	Coarse	0.61				Technic	ian who		
Air Terr	np.	72.7	Relativ	/e Yield	0.985	Bag I	Factor	5.3				conduct	ed tests:		
Materi	al	Design	Buckets	Weight	Vol			Air Un. Wt.	Bucket Fu		V	Vorkability /	Coarsenes	s	
Cem	ontitious 1.	20.62	1	20.62			ow Range	5 50% 120.2	2 12 60	1	CE Actual	60.5		#NILINAL	

Material	Design	Buckets	Weight	Vol		Air	Un. Wt.	Bucket Fu	W	orkability /	Coarseness
Cementitious 1:	20.63	1	20.63	24 4710/	Low Range	5.50%	139.22	42.60	CF Actual	60.5	#NUM!
Cementitious 2:	6.88	1	6.88	24.47170	Design Un. Wt	6.00%	138.53	42.42	AWF upper limit	40.0	Positive
Sand #1:	65.44	2	32.72	37.789%	High Range	6.50%	137.84	42.25	AWF lower limit	32.0	Positive
Coarse Aggregate 1:	104.87	2	52.43	62.211%	Bucket Weight	7.79			AWF	31.0	Out of MDOT Limits
Coarse Aggregate 2:	0.00	1	0.00	0.000%	Bucket Volume	0.250			CF upper limit	#NUM!	Negative Under Radical
Coarse Aggregate 3:	0.00	1	0.00	0.000%	Bucket Full	42.96			CF lower limit	#NUM!	Negative Under Radical
Coarse Aggregate 4:	0.00	1	0.00	0.000%	Theoretical Air	4.54			WF Actual	32.8	

		M	DOT Shi	rinkage a	and Dura	ability - S	State Stu	dy No. 2'	6				Comm	ents / Note	s / Obse	rvations
Customer:		MDC	DT	Project:			BCD 08	30739			Lab #:	BCD				
MIX N	UMBER	Mix 2	26	Notes:	Ту	pe GU - 5	50% GGBF	S			Set #:	Mix 26	1			
	Date:	5/14/2009		Mix Code:		f'c:	4,000 psi	S	ize(c.f.):	1.50	Factor:	0.06				
MIX DE	SIGN INF	0	cu. vd.	lab batch	lab batch	batch Wt.				Specific	absorp-		1			
	Material	Vol. (c.f.)	Wt (lbs)	Wt. (lbs.)	Wt. (lbs.)	(lbs.)	Mat	erial Sourc	e	Gravity	tion	Agg. FM				
Ce	ement 1:	1.31	253.32	14.07	14.07	14.07	Cem	nent Type G	J 	3.11						
Ce	ment 2:	0.00		0.00	0.00											
	Fly Ash:	0.00	050.00	0.00	0.00	44.07							Report Slu	mp. Air 5.5	to 6.5 %.	
(GBFS:	1.40	253.32	14.07	14.07	14.07		GGBFS		2.89	0.200/	2.69				
Coorso Aggr	Sand 1:	0.09	1971.00	102.04	65.44	00.44	No 57 (To Source A	200.2	2.044	0.38%	2.08				
Coarse Aggin	eyale I.	11.00	1071.00	103.34	104.67	104.07	10 57 0	Slavel Soul	Ce Z	2.525	2.22 /0	0.72	-			
Coarse Aggre	egate 2:	0.00		0.00	0.00		 									
Coarse Aggre	egate 3:	0.00		0.00	0.00											
Coarse Aggre	egate 4:	0.00		0.00	0.00											
Air:	6.00%	1.62	0.00	0.00	0.00		[
	Water:	3.90	243.18	13.51	10.28	10.28				1.00			5	Strength To	est Resul	ts
"+-Air:	0.50%			 										AGE	psi	Avg. psi
													Date	4x	8 CYLINDI	ERS
	Total:	27.00	3757.34	208.74	208.74		•							1 days	810	800
UW	w/o Air:		148.04	148.04	148.04					Aggr	egate Mois	stures	05/15/09	1 days	790	800
											Free H2O	Batch free		7 days	3730	3600
			ADM		IATION						Content	H2O (Ibs.)	05/21/09	7 days	3470	3000
Туре		oz /cwt	oz /cy	ml /cy	batch ml	actual ml	Br	and / Name		Sand:	3.66%	2.30		14 days	5630	5600
Air		0.40	2.0	59.9	3.3	3.3				CA 1	0.91%	0.93	05/28/09	14 days	5570	3000
WR Type A	۱.	4.00	20.3	599.3	33.3	33.3				CA 2		0.00		28 days	6890	
				<u> </u>		<u> </u>	l			CA 3		0.00		28 days	6320	6507
				L						CA 4		0.00	06/11/09	28 days	6310	
				<u> </u>		<u> </u>				Water	Added/Wi	thheld		56 days	6810	6945
										+/- h2o	Added	W/held	07/09/09	56 days	7080	
	PLA	ASTIC TEST R	ESULTS				OTHER	INFO								
Batch Time		10:30 AM	%	Air	6.00	Des	. W/C	0.48	ر 							
Sample Tim	e	10:38 AM	Unit we	ignt (pcf)	142.08	Act	. W/C	0.48)							
			Vi	old												
Slump in		6 75	ΥI	eiu	1 47	Dec l	In W/t	120.4	6							
Siump, In.		72.2	Initial a	ot min	1.4/ NA	Des.(200100	109.1	0				Teehrin	ion who		
Air Temp.		72.5	Relativ	e Yield	0.979	Bag I	Factor	0.61 5.4					conduct	idii WNO od tosts:		
/ in remp.	i	72.0	rteidth		0.070	Day	40101	5.4					conduct	כט וכסוס.		
Material		Design	Buckets	Weight	Vol			Δir	In Wt	Bucket Fu			Workability	/ Coarsenes	s	î
Cement	itious 1.	14 07	1	14.07		1.	ow Range	5 50%	139.86	42 75		CF Actual	60.5		#NI IMI	
Content		14.07		14.07	24.471%	h		0.0070	100.00	72.10			00.0		#NON!	

Ivialerial	Design	DUCKEIS	weight	V0I	i	All	UII. WUL 5	ucket ru		orkability	Coarseness
Cementitious 1:	14.07	1	14.07	24 4710/	Low Range	5.50%	139.86	42.75	CF Actual	60.5	#NUM!
Cementitious 2:	14.07	1	14.07	24.47170	Design Un. Wt	6.00%	139.16	42.58	AWF upper limit	40.0	Positive
Sand #1:	65.44	2	32.72	37.789%	High Range	6.50%	138.47	42.41	AWF lower limit	32.0	Positive
Coarse Aggregate 1:	104.87	2	52.43	62.211%	Bucket Weight	7.79			AWF	31.3	Out of MDOT Limits
Coarse Aggregate 2:	0.00	1	0.00	0.000%	Bucket Volume	0.250			CF upper limit	#NUM!	Negative Under Radical
Coarse Aggregate 3:	0.00	1	0.00	0.000%	Bucket Full	43.31			CF lower limit	#NUM!	Negative Under Radical
Coarse Aggregate 4:	0.00	1	0.00	0.000%	Theoretical Air	4.03			WF Actual	32.8	

	М	DOT Sh	rinkage a	and Dura	ability - S	State Stud	ly No. 216				Comm	ents / Not	es / Obsei	vations
Customer:	MDO	ЭΤ	Project:			BCD 08	0739		Lab #:	BCD				
MIX NUMBEI	R Mix 2	7.1	Notes:	Type I -	25% C A	sh Blended	Agg.		Set #:	Mix 27.1	1			
Date	e: 6/4/2009		Mix Code:		f'c:	4,000 psi	Size(c.f.):	1.50	Factor:	0.06				
MIX DESIGN II	NFO		SSD mix	Aujusteu	Actual lab			Specific	absorp-		1			
Materia	al Vol. (c.f.)	Wt (lbs)	Wt. (lbs.)	Wt. (lbs.)	(lbs.)	Mate	rial Source	Gravity	tion	Agg. FM				
Cement 1	1.87	367.50	20.42	20.42	20.42	Cen	nent Type I	3.15						
Cement 2	2: 0.00		0.00	0.00							Slump 4 1/	4 to 5 1/4".	Air 5.5 to 6	.5 %.
Fly Ash	n: 0.74	122.50	6.81	6.81	6.81	Тур	e C Fly Ash	2.64	L		Repeat of I	mix 20.1. wi	th optimize	əd
GGBFS	S: 0.00	1	0.00	0.00					<u> </u>	ļ	aggregates	s. Water 68.	Air 7.7% r	etested at
Sand 1	1: 7.80	1287.29	71.52	74.54	74.54	San	d Source 2	2.644	0.38%	2.68	6.25%. Sen	isor 3.		
Coarse Aggregate 1	10.46	1647.00	91.50	93.09	93.09	No 57 G	ravel Source 2	2.523	2.22%	6.72				
Coarse Aggregate 2	2: 0.74	116.00	6.44	6.58	6.58	No 8 Gr	avel Source 2	2.523	2.57%	5.99				
Coarse Aggregate 3	3: 0.00		0.00	0.00				***********		, , , , , , , , , , , , , , , , , , ,	1			
		1							İ	<u> </u>	1			
Coarse Aggregate 4	4: 0.00		0.00	0.00										
Air: 6.00%	6 1.62	0.00	0.00	0.00					1		1			
Wate	r: 3.77	235.00	13.06	8.30	8.30			1.00		·		Strength T	est Resul	ts
"+-Air: 0.50%	6	[T		[<u> </u>	[AGE	psi	Avg. psi
		1	1						1		Date	4x	8 CYLIND	RS
Tata	07.00	0775.00	000 74	000.74							Buto			
I ota	1: 27.00	3775.29	209.74	209.74				A		. 4	00/05/00	1 days	1210	1225
UVV W/O AI	r:	148.75	148.75	148.75	-			Aggr	egate Mol	stures	06/05/09	1 days	1240	
									Free H2O Content	Batch free	00/44/00	/ days	3980	3965
Turne						D			4.050/	1120 (103.)	06/11/09	7 days	3950	
i ype	oz /cwt	oz /cy	mi/cy	batch ml	actual mi	Bra	ind / Name	Sand:	4.25%	3.03	00/40/00	14 days	4470	4465
	0.37	1.8	53.6	3.0	3.0			CA 1	1.78%	1.59	06/18/09	14 days	4460	
WR Type A	4.00	19.6	579.7	32.2	32.2				2.17%	0.14		28 days	5040	5000
		.	¦							0.00	07/00/00	28 days	5210	5023
		÷	÷					CA 4	Added/\A/	0.00	07/02/09	28 days	4820	
			+	 				vvater			07/20/00	56 days	5450	5585
DI			i				INFO	+/- nzo	Added	w/neiu	07/30/09	56 days	5/20	
Batch Time	10.10 AM	«LOULIO	Δir	6.25	Des	w/c	0.480		i					
Sample Time	10:18 AM	/o Unit We	hight (pcf)	0.20	Act	. w/c	0.480			i				
Campie Time	10.10 Am		igni (poi)	140.30	7101.	w/c	0.400							
		Yi	ield											
Slump, in.	5.00			1.49	Des.L	Jn.Wt.	139.83							
Mix Temp.	72.8	Initial s	set. min.	NA	Fine/C	Coarse	0.73			<u> </u>	Technic	ian who		
Air Temp.	71.6	Relativ	ve Yield	0.996	Bag F	actor	5.2				conduct	ed tests:		
										:				
Material	Design	Buckets	Weight	Vol	Air ! Un. Wt. :				1		Workability	/ Coarsene	55	

Material	Design	Buckets	Weight	Vol		Air	Un. Wt.	Bucket Ful	W	orkabilit	y / Coarseness
Cementitious 1:	20.42	1	20.42	22 627%	Low Range	5.50%	140.53	42.89	CF Actual	55.7	Within MDOT Limits
Cementitious 2:	6.81	1	6.81	23.027 /0	Design Un. Wt	6.00%	139.83	42.72	AWF upper limit	39.7	Positive
Sand #1:	74.54	2	37.27	42.202%	High Range	6.50%	139.13	42.54	AWF lower limit	32.3	Positive
Coarse Aggregate 1:	93.09	2	46.55	53.995%	Bucket Weight	7.76			AWF	34.6	Within MDOT Limits
Coarse Aggregate 2:	6.58	1	6.58	3.803%	Bucket Volume	0.250			CF upper limit	73.1	Positive
Coarse Aggregate 3:	0.00	1	0.00	0.000%	Bucket Full	42.85			CF lower limit	48.9	Positive
Coarse Aggregate 4:	0.00	1	0.00	0.000%	Theoretical Air	5.64			WF Actual	36.5	

		MC	OT Shr	inkage a	and Dura	ability - S	State Stud	ly No. 216				Comm	ents / Note	es / Obsei	vations
Customer:		MDC	DT	Project:			BCD 08	0739		Lab #:	BCD				
MIX NUM	BER	Mix 2	28	Notes:	Type I	- 25% F A	sh Blendec	l Agg.		Set #:	Mix 28	1			
[Date:	5/19/2009		Mix Code:		f'c:	4,000 psi	Size(c.f.):	1.50	Factor:	0.06				
MIX DESIG	GN INFO	0	cu. vd.	lab batch	lab batch	batch Wt.			Specific	absorp-					
Ma	terial	Vol. (c.f.)	Wt (lbs)	Wt. (lbs.)	Wt. (lbs.)	(lbs.)	Mate	rial Source	Gravity	tion	Agg. FM				
Ceme	ent 1:	1.79	352.50	19.58	19.58	19.58	Cer	nent Type I	3.15						
Ceme	Ant 2:	0.00	447.50	0.00	0.00	0.50	Ely Ash		2.24						
Fly		0.84	117.50	0.00	0.53	0.53	FIY ASI	ST KDWORTOW	2.24			Slump 5 to	6. Air 5.5 t	o 6.5 %.	
	DF 3. nd 1:	7.83	1292 23	71 79	74.43	74 43	San	d Source 2	2 644	0.38%	2.68				
Coarse Aggrega	nte 1	10.55	1661.00	92.28	93.48	93 48	No 57 G	ravel Source 2	2 523	2 22%	6.72				
Coarse Aggrega	ate 2.	0.75	118.00	6 56	6 74	6 74	No 8 G	ravel Source 2	2 5 2 3	2 57%	5 99				
Coarse Aggrege	to 2.	0.00	110.00	0.00	0.00	0.7 1			2.020	2.0770	0.00				
	ale J.	0.00		0.00	0.00				+						
Coarse Aggrega	ate 4:	0.00		0.00	0.00										
Air: 6	.00%	1.62	0.00	0.00	0.00										
W	ater:	3.61	225.50	12.53	8.51	8.51			1.00			5	Strength T	est Resul	ts
"+-Air: 0	.50%												AGE	psi	Avg. psi
												Date	4x	8 CYLINDE	RS
1	Fotal:	27.00	3766.73	209.26	209.26				•				1 days	1310	1210
UW w/d	o Air:		148.41	148.41	148.41				Aggr	egate Mois	stures	05/20/09	1 days	1310	1310
										Free H2O	Batch free		7 days	3910	3895
			ADMI	X INFORM	ATION					Content	H2O (lbs.)	05/26/09	7 days	3880	
Туре		oz /cwt	oz /cy	ml /cy	batch ml	actual ml	Bra	and / Name	Sand:	3.69%	2.64		14 days	4470	4255
Air		0.85	4.0	118.1	6.6	6.6			CA 1	1.33%	1.20	06/02/09	14 days	4040	
WR Type A		4.00	18.8	556.0	30.9	30.9			CA 2	2.85%	0.18		28 days	5030	
									CA 3		0.00		28 days	5180	5073
									CA 4	A al al a al (AA/	0.00	06/16/09	28 days	5010	
									water		tnneia	07/14/00	56 days	5900	5885
	PI AS	STIC TEST R	ESULTS				OTHER	INFO	+/- n20	Added	w/neiu	07/14/09	56 days	9070	
Batch Time	- 270	11:07 AM	%	Air	6.00	Des	. w/c	0.480			!				
Sample Time		11:16 AM	Unit We	ight (pcf)	141.16	Act	. w/c	0.480				1			
			Yi	eld											
Slump, in.		2.75			1.48	Des.l	Jn.Wt.	139.51						-	
Mix Temp.		72.4	Initial s	et, min.	NA	Fine/0	Coarse	0.73	 			Technic	ian who		
Air Temp.		/2.4	Relativ	e Yield	0.988	вад і	actor	5.0				conduct	ed tests:		
Material		Design	Buckets	Weight	Vol	1		Air IIn W/	Rucket Eu	1		Vorkability	/ Coarsene	22	
Comontitio	10.1.	10 50		10 50	101	<u> </u>	ow Pango	5 50% 140.21	40.04		CE Actual	EE 7	1 200136116		las las

Material	Design	Buckets	Weight	Vol		Air	Un. Wt.	Bucket Fu	W	orkability	/ Coarseness
Cementitious 1:	19.58	1	19.58	22 1/0%	Low Range	5.50%	140.21	42.81	CF Actual	55.7	Within MDOT Limits
Cementitious 2:	6.53	1	6.53	23.14070	Design Un. Wt	6.00%	139.51	42.64	AWF upper limit	39.7	Positive
Sand #1:	74.43	2	37.21	42.075%	High Range	6.50%	138.81	42.46	AWF lower limit	32.3	Positive
Coarse Aggregate 1:	93.48	2	46.74	54.083%	Bucket Weight	7.76			AWF	33.9	Within MDOT Limits
Coarse Aggregate 2:	6.74	1	6.74	3.842%	Bucket Volume	0.250			CF upper limit	72.1	Positive
Coarse Aggregate 3:	0.00	1	0.00	0.000%	Bucket Full	43.05			CF lower limit	49.9	Positive
Coarse Aggregate 4:	0.00	1	0.00	0.000%	Theoretical Air	4.89			WF Actual	36.4	

		MDO	T Shrir	nkage a	nd Dura	ability -	State S	tudy No	o. 216				Comme	nts / Note	es / Obse	rvations
Custom	ier:	MDC	т	Project:			BCD 0	80739			Lab #:	BCD				
MIX	NUMBER	Mix	29	Notes:	1	Гуре I - N	IDOT BD				Set #:	Mix 29				
	Date:	5/26/2009		Mix Code:		f'c:	4,000 psi		Size(c.f.):	1.50	Factor:	0.06				
MIXI	DESIGN IN	FO	SSD mix	SSD mix	Adjusted	Actual				Specific	absorp-					
	Material	Vol. (c.f.)	1 cu. yd.	lab batch	lab batch	lab batch	Mat	terial Sou	rce	Gravity	tion	Agg. FM				
0	Cement 1:	2.87	564.00	31.33	31.33	31.33	C€	ement Typ	e I	3.15						
C	Cement 2:	0.00		0.00	0.00											
	Fly Ash:	0.00		0.00	0.00								Slump 2 1	/4 - 3 3/4".	Air 6 1/2 -	7 1/2%.
	GGBFS:	0.00		0.00	0.00								Water Ter	np 68.0 F.	Sensor 3.	
	Sand 1:	4.11	678.88	37.72	39.22	39.22	Sa	nd Sourc	e 2	2.644	0.38%	2.68				
Coarse Age	gregate 1:	10.74	1691.00	93.94	95.47	95.47	No 57 (Gravel So	ource 2	2.523	2.22%	6.72				
Coarse Age	gregate 2:	3.31	564.00	31.33	33.54	33.54	No 11 Li	mestone	Source 2	2.727	0.62%	3.00				
Coarse Age	gregate 3:	0.00		0.00	0.00											
Coarse Age	gregate 4:	0.00		0.00	0.00											
Air:	7.00%	1.89	0.00	0.00	0.00											
	Water:	4.07	254.00	14.11	8.88	8.88				1.00			S	trength T	est Resu	lts
"+-Air:	0.50%													AGE	psi	Avg. psi
													Date	4x	8 CYLIND	RS
	Total:	27.00	3751.88	208.44	208.44									1 days	2460	2505
UV	W w/o Air:		149.42	149.42	149.42					Aggre	gate Mois	stures	05/27/09	1 days	2550	2303
						-					Free H2O	Batch free		7 days	4890	4885
			ADMI		ATION						Content	H2O (lbs.)	06/02/09	7 days	4880	4003
Туре		oz /cwt	oz /cy	ml /cy	batch ml	actual mi	Bi	rand / Nam	ie	Sand:	4.00%	1.50		14 days	5170	5280
Air		0.49	2.8	81.7	4.5	4.5				CA 1	1.66%	1.53	06/09/09	14 days	5390	5200
WR Type	e A	4.00	22.6	667.2	37.1	37.1				CA 2	7.08%	2.20		28 days	5820	
										CA 3		0.00		28 days	6180	6017
										CA4		0.00	06/23/09	28 days	6050	
										Water	Added/Wi	thheld		56 days	6040	6315
										+/- h2o	Added	W/held	07/21/09	56 days	6590	
	PLA	STIC TEST F	RESULTS				OTHE	R INFO								
Batch Ti	me	10:28 AM	%	Air	7.50	Des	. w/c	0.4	50							
Sample T	lime	10:36 AM	Unit We	ight (pcf)	139.80	Act.	w/c	0.4	50							
Chuman	i.e.	0.75	YI	eld	4.40	Deel	Im 10/4	400								
Siump,	in.	3.75	Initial a	ot min	1.49	Des.C		130	70						1	_
	np.	73.6	Initial S	et, min.	NA 0.004	Fine/C	oarse	0.	/3				Technic	ian who		
Airtein	ip.	12.2	Relativ		0.994	Day r	actor	0	.0		1		conduct	ed tests:		
Materia	al	Design	Buckets	Weight	Vol			Air	Un. Wt.	ucket Fu		v	Vorkability	/ Coarsen	ess	
Ceme	entitious 1:	31.33	1	31.33	05 7000/	Lo	w Range	6.50%	139.66	42.67		CF Actual	59.5	Witl	nin MDOT L	imits
Ceme	entitious 2:	0.00	1	0.00	20.703%	Desig	ın Un. Wt	7.00%	138.96	42.50	AWF u	pper limit	40.0		Positive	
	Sand #1:	39.22	2	19.61	23.139%	Hig	h Range	7.50%	138.27	42.33	AWF Id	ower limit	32.0		Positive	
Coarse Age	gregate 1:	95.47	2	47.74	57.637%	Bucke	et Weight	7.76				AWF	36.7	Wit	nin MDOT L	imits
Coarse Age	gregate 2:	33.54	1	33.54	19.224%	Bucke	t Volume	0.250			CF u	pper limit	73.8		Positive	
Coarse Age	gregate 3:	0.00	1	0.00	0.000%	Bucke	et Full	42.71			CF lo	ower limit	48.2		Positive	
Coarse Age	gregate 4:	0.00	1	0.00	0.000%	Theore	tical Air	6.44			`	VF Actual	36.7			

		MDO	T Shrir	nkage a	nd Durability - State Study No. 216							Comme	nts / Note	s / Obse	rvations	
Custor	ner:	MDC	т	Project:			BCD 0	80739			Lab #:	BCD				
MIX	NUMBER	Mix	30	Notes:	Type I -	50% GG	BFS MD	OT BD			Set #:	Mix 30				
	Date:	5/26/2009		Mix Code:		f'c:	4,000 psi		Size(c.f.):	1.50	Factor:	0.06				
MIX	DESIGN IN	FO	SSD mix	SSD mix	Adjusted	Actual				Specific	absorp-					
	Material	Vol. (c.f.)	1 cu. yd.	lab batch	lab batch	lab batch	Ma	terial Sou	irce	Gravity	tion	Agg. FM				
	Cement 1:	1.43	282.00	15.67	15.67	15.67	Ce	ement Typ	e I	3.15						
	Cement 2:	0.00		0.00	0.00											
	Fly Ash:	0.00		0.00	0.00								Slump 2 1	/4 - 3 3/4".	Air 6 1/2 -	7 1/2%.
	GGBFS:	1.56	282.00	15.67	15.67	15.67		GGBFS		2.89			Sensor 4.			
	Sand 1:	4.61	760.28	42.24	43.92	43.92	Sa	nd Sourc	e 2	2.644	0.38%	2.68				
Coarse Ag	gregate 1:	10.75	1692.00	94.00	95.53	95.53	No 57	Gravel So	ource 2	2.523	2.22%	6.72				
Coarse Ag	gregate 2:	2.69	457.00	25.39	27.18	27.18	No 11 Li	mestone	Source 2	2.727	0.62%	3.00				
Coarse Ag	gregate 3:	0.00		0.00	0.00											
Coarse Ag	gregate 4:	0.00		0.00	0.00											
Air:	7.00%	1.89	0.00	0.00	0.00											
	Water:	4.07	254.00	14.11	9.12	9.12				1.00			S	trength T	est Resu	lts
"+-Air:	0.50%													AGE	psi	Avg. psi
													Date	4x	8 CYLINDI	RS
	Total:	27.00	3727.28	207.07	207.07)7 4							1 days	700	700	
U	IW w/o Air:		148.44	148.44	148.44	4			Aggre	gate Mois	stures	05/27/09	1 days	700	700	
						4					Free H2O	Batch free		7 days	3850	2720
			ADMI	X INFORM	IATION						Content	H2O (lbs.)	06/02/09	7 days	3590	3720
Туре	•	oz /cwt	oz /cy	ml /cy	batch ml	actual ml	В	rand / Nam	ne	Sand:	4.00%	1.68		14 days	5720	5730
Air		0.49	2.8	81.7	4.5	4.5				CA 1	1.66%	1.53	06/09/09	14 days	5740	5750
WR Typ	be A	4.00	22.6	667.2	37.1	37.1				CA 2	7.08%	1.79		28 days	6680	
										CA 3		0.00		28 days	7020	6980
										CA4		0.00	06/23/09	28 days	7240	
										Water	Added/Wi	thheld		56 days	7770	7405
										+/- h2o	Added	W/held	07/21/09	56 days	7040	7403
	PLA	STIC TEST F	RESULTS				OTHE	r info								
Batch T	ïme	3:32 PM	%	Air	6.50	Des	. w/c	0.4	150							
Sample	Time	3:40 PM	Unit We	ight (pcf)	141.32	Act.	w/c	0.4	150							
			Yi	eld												
Slump,	in.	3.50			1.47	Des.L	Jn.Wt.	138	3.05							
Mix Ter	np.	73.5	Initial s	et, min.	NA	Fine/C	Coarse	0.	35				Technic	ian who		
Air Ten	np.	73.8	Relativ	ve Yield	0.977	Bag F	actor	6	.0				conduct	ed tests:		ĩ
N da ta ar	- 1	Desire	Duslists	14/-:	1/-1			A:	11	webet Fu	1	v	/orkobility	/ Coorcon		
Ivlater	iai	Design	Buckets	vveight	VOI		w Danga		129.74	AD 45			FOO	/ Coarsen	ISS MOOT I	1
Ceme	entitious 1:	15.67	1	15.67	26.181%	Dosic	n IIn Wt	7.00%	130.74	42.45	A)A/E	CF Actual	59.6	VVItr		limits
Ceme	Sond #1	10.07	1	13.67	26 1220/	Desig	h Panga	7.00%	127.00	42.27		pper limit	40.0		Positive	
Cooros As		43.92		43.92	20.133%	Buck	t Weight	7.50%	137.30	42.10	AWFI		32.0	18/:+L		imito
Coarse Ag	gregate 1:	90.53	2	47.76	15 7000/	Bucke	t Volume	0.250			CE	AWF	30.3	vvitr		Limits
Coarse Ag	gregate 2:	21.18	1	21.18	0.000%	Bucket Volume Bucket Full		43.00					14.0		Positive	
Coarse Ac	noregate Δ .	0.00	1	0.00	0.000%	Theore	tical Air	4,80				NF Actual	36.3		i ositive	
234100710		5.50	8	0.00	0.00070						•			1		

Appendix B

Raw Data for Shrinkage and Permeability

278 COMMERCE PARK DRIVE RIDGELAND, MS 39157

PBCD JOB NO. 080739

Mix Number	Mix 1
Mix Date	Tuesday, March 17, 2009
Mix Time	11:56 AM

				SHRINKA	GE TESTIN	G - ASTM C	:157					
	Reference Bar Length (in.)					INITIA	AL READING	SS				
	10	Specimen 1	Reference Bar 1	Δ Length 1	Specimen 2	Reference Bar 2	Δ Length 2	Specimen 3	Reference Bar 3	Δ Length 3	Average	
Specimen Age	Test date	(.0001 in.)	(.0001 in.)	Inches	(.0001 in.)	(.0001 in.)	Inches	(.0001 in.)	(.0001 in.)	Inches	Inches	
1	Wednesday, March 18, 2009	0.0401	0.0182	0.0219	0.0614	0.0182	0.0432	0.0501	0.0182	0.0319	0.0323	
					LE	NGTH CHA	NGE CALC	ULATIONS				
		Specimen 1	Reference Bar 1	Δ Length 1	Specimen 2	Reference Bar 2	Δ Length 2	Specimen 3	Reference Bar 3	Δ Length 3	Average	
		(.0001 in.)	(.0001 in.)	(0.001%)	(.0001 in.)	(.0001 in.)	(0.001%)	(.0001 in.)	(.0001 in.)	(0.001%)	(.01%)	
28	Tuesday, April 14, 2009	0.0626	0.0400	0.0070	0.0838	0.0400	0.0060	0.0718	0.0392	0.0070	0.0067	
32	Saturday, April 18, 2009	0.0607	0.0392	-0.0040	0.0818	0.0392	-0.0060	0.0708	0.0392	-0.0030	-0.0043	
35	Tuesday, April 21, 2009	0.0602	0.0391	-0.0080	0.0815	0.0391	-0.0080	0.0704	0.0391	-0.0060	-0.0073	
42	Tuesday, April 28, 2009	0.0597	0.0392	-0.0140	0.0810	0.0392	-0.0140	0.0698	0.0391	-0.0120	-0.0133	
56	Tuesday, May 12, 2009	0.0588	0.0392	-0.0230	0.0801	0.0392	-0.0230	0.0690	0.0392	-0.0210	-0.0223	
84	Tuesday, June 09, 2009	0.0556	0.0369	-0.0320	0.0770	0.0369	-0.0310	0.0659	0.0369	-0.0290	-0.0307	
140	Tuesday, August 04, 2009	0.0523	0.0351	-0.0470	0.0739	0.0351	-0.0440	0.0624	0.0351	-0.0460	-0.0457	
252	Tuesday, November 24, 2009	0.0517	0.0350	-0.0520	0.0733	0.0350	-0.0490	0.0619	0.0350	-0.0500	-0.0503	
476	Tuesday, July 06, 2010	0.1278	0.1108	-0.0490	0.1493	0.1108	-0.0470	0.1380	0.1108	-0.0470	-0.0477	

Note: Lowest Reading Value Recorded (Minimum)

	PERMEABILITY - ASTM C 1202									
		Specimen P1	Specimen P1			Specimen P2	Specimen P2			
		Diameter 1	Diameter 2	Measured	Adjusted	Diameter 1	Diameter 2	Measured	Adjusted	Average
Specimen Age	Test date	(.001 in.)	(.001 in.)	Coulombs	Coulombs	(.001 in.)	(.001 in.)	Coulombs	Coulombs	Coulombs
28	Tuesday, April 14, 2009	4.021	4.016	2356	2052	4.030	4.022	2593	2250	2151
91	Tuesday, June 16, 2009	4.020	4.010	1983	1730	4.022	4.018	1861	1619	1675
365	Wednesday, March 17, 2010	4.020	4.009	1523	1329	4.017	4.021	1210	1053	1191

BUS: (601) 856-2332 FAX: (601) 856-3552

143

278 COMMERCE PARK DRIVE RIDGELAND, MS 39157

BCD JOB NO. 080739

Mix Number	Mix 2.1
Mix Date	Thursday, May 28, 2009
Mix Time	1:41 PM

	SHRINKAGE TESTING - ASTM C157											
	Reference Bar Length (in.)					INITI	AL READING	S				
	10		Reference			Reference Bar			Reference Bar			
	10	Specimen 1	Bar 1	Δ Length 1	Specimen 2	2	Δ Length 2	Specimen 3	3	Δ Length 3	Average	
Specimen Age	Test date	(.0001 in.)	(.0001 in.)	Inches	(.0001 in.)	(.0001 in.)	Inches	(.0001 in.)	(.0001 in.)	Inches	Inches	
1	Friday, May 29, 2009	0.0475	0.0384	0.0091	0.0247	0.0384	-0.0137	0.0527	0.0384	0.0143	0.0032	
					L	LENGTH CHA	NGE CALCU	JLATIONS				
			Reference			Reference Bar			Reference Bar			
		Specimen 1	Bar 1	Δ Length 1	Specimen 2	2	Δ Length 2	Specimen 3	3	Δ Length 3	Average	
		(.0001 in.)	(.0001 in.)	(0.001%)	(.0001 in.)	(.0001 in.)	(0.001%)	(.0001 in.)	(.0001 in.)	(0.001%)	(.01%)	
28	Thursday, June 25, 2009	0.0443	0.0351	0.0010	0.0216	0.0352	0.0010	0.0498	0.0351	0.0040	0.0020	
32	Monday, June 29, 2009	0.0437	0.0352	-0.0060	0.0210	0.0352	-0.0050	0.0491	0.0352	-0.0040	-0.0050	
35	Thursday, July 02, 2009	0.0435	0.0352	-0.0080	0.0208	0.0352	-0.0070	0.0490	0.0352	-0.0050	-0.0067	
42	Thursday, July 09, 2009	0.0422	0.0352	-0.0210	0.0194	0.0352	-0.0210	0.0477	0.0352	-0.0180	-0.0200	
56	Thursday, July 23, 2009	0.0415	0.0350	-0.0260	0.0187	0.0350	-0.0260	0.0469	0.0350	-0.0240	-0.0253	
84	Thursday, August 20, 2009	0.0406	0.0348	-0.0330	0.0178	0.0348	-0.0330	0.0459	0.0348	-0.0320	-0.0327	
140	Thursday, October 15, 2009	0.0401	0.0349	-0.0390	0.0171	0.0349	-0.0410	0.0454	0.0349	-0.0380	-0.0393	
252	Thursday, February 04, 2010	0.0399	0.0351	-0.0430	0.0169	0.0351	-0.0450	0.0451	0.0351	-0.0430	-0.0437	
476	Thursday, September 16, 2010	0.1052	0.0997	-0.0360	0.0822	0.0997	-0.0380	0.1104	0.0997	-0.0360	-0.0367	

Note: Lowest Reading Value Recorded (Minimum)

	PERMEABILITY - ASTM C 1202									
		Specimen P1	Specimen P1			Specimen P2	Specimen P2			
		Diameter 1	Diameter 2	Measured	Adjusted	Diameter 1	Diameter 2	Measured	Adjusted	Average
Specimen Age	Test date	(.001 in.)	(.001 in.)	Coulombs	Coulombs	(.001 in.)	(.001 in.)	Coulombs	Coulombs	Coulombs
29	Friday, June 26, 2009	4.012	4.019	1660	1448	4.009	4.021	1790	1562	1505
92	Friday, August 28, 2009	3.994	4.002	1660	1460	4.000	4.001	1358	1193	1327
365	Friday, May 28, 2010	4.000	3.999	1185	1042	4.003	3.999	1100	966	1004

278 COMMERCE PARK DRIVE RIDGELAND, MS 39157

BCD JOB NO. 080739

Mix Number	Mix 3
Mix Date	Tuesday, March 24, 2009
Mix Time	12:59 PM

		SHRINKAGE TESTING - ASTM C157										
	Reference Bar Length (in.)					INITI	AL READING	S				
	10		Reference			Reference Bar			Reference Bar			
	10	Specimen 1	Bar 1	Δ Length 1	Specimen 2	2	Δ Length 2	Specimen 3	3	Δ Length 3	Average	
Specimen Age	Test date	(.0001 in.)	(.0001 in.)	Inches	(.0001 in.)	(.0001 in.)	Inches	(.0001 in.)	(.0001 in.)	Inches	Inches	
1	Wednesday, March 25, 2009	0.1016	0.0188	0.0828	0.1088	0.0188	0.0900	0.0866	0.0188	0.0678	0.0802	
						LENGTH CHA	ANGE CALCU	JLATIONS				
			Reference			Reference Bar			Reference Bar			
		Specimen 1	Bar 1	Δ Length 1	Specimen 2	2	Δ Length 2	Specimen 3	3	Δ Length 3	Average	
		(.0001 in.)	(.0001 in.)	(0.001%)	(.0001 in.)	(.0001 in.)	(0.001%)	(.0001 in.)	(.0001 in.)	(0.001%)	(.01%)	
28	Tuesday, April 21, 2009	0.1233	0.0392	0.0130	0.1295	0.0392	0.0030	0.1073	0.0391	0.0040	0.0067	
32	Saturday, April 25, 2009	0.1226	0.0393	0.0050	0.1288	0.0393	-0.0050	0.1066	0.0393	-0.0050	-0.0017	
35	Tuesday, April 28, 2009	0.1223	0.0392	0.0030	0.1285	0.0392	-0.0070	0.1064	0.0392	-0.0060	-0.0033	
42	Tuesday, May 05, 2009	0.1219	0.0391	0.0000	0.1280	0.0391	-0.0110	0.1060	0.0391	-0.0090	-0.0067	
56	Tuesday, May 19, 2009	0.1206	0.0383	-0.0050	0.1266	0.0383	-0.0170	0.1047	0.0383	-0.0140	-0.0120	
84	Tuesday, June 16, 2009	0.1170	0.0352	-0.0100	0.1227	0.0352	-0.0250	0.1011	0.0352	-0.0190	-0.0180	
140	Tuesday, August 11, 2009	0.1150	0.0349	-0.0270	0.1211	0.0349	-0.0380	0.0995	0.0349	-0.0320	-0.0323	
252	Tuesday, December 01, 2009	0.1145	0.0350	-0.0330	0.1204	0.0350	-0.0460	0.0990	0.0350	-0.0380	-0.0390	
476	Tuesday, July 13, 2010	0.1798	0.0999	-0.0290	0.1855	0.0999	-0.0440	0.1641	0.0999	-0.0360	-0.0363	

Note: Lowest Reading Value Recorded (Minimum)

	PERMEABILITY - ASTM C 1202									
		Specimen P1	Specimen P1			Specimen P2	Specimen P2			
		Diameter 1	Diameter 2	Measured	Adjusted	Diameter 1	Diameter 2	Measured	Adjusted	Average
Specimen Age	Test date	(.001 in.)	(.001 in.)	Coulombs	Coulombs	(.001 in.)	(.001 in.)	Coulombs	Coulombs	Coulombs
28	Tuesday, April 21, 2009	4.020	4.011	1818	1586	4.011	4.034	2013	1750	1668
91	Tuesday, June 23, 2009	4.021	4.010	898	783	4.010	4.028	912	794	789
365	Wednesday, March 24, 2010	4.020	4.011	589	514	4.011	4.023	539	470	492

278 COMMERCE PARK DRIVE RIDGELAND, MS 39157

BCD JOB NO. 080739

 Mix Number
 Mix 4

 Mix Date
 Thursday, March 19, 2009

 Mix Time
 1:34 PM

				SHRINK	AGE TESTIN	G - ASTM C1	57					
	Reference Bar Length (in.)					INITI	AL READING	S				
	10		Reference			Reference Bar			Reference Bar			
	10	Specimen 1	Bar 1	Δ Length 1	Specimen 2	2	Δ Length 2	Specimen 3	3	Δ Length 3	Average	
Specimen Age	Test date	(.0001 in.)	(.0001 in.)	Inches	(.0001 in.)	(.0001 in.)	Inches	(.0001 in.)	(.0001 in.)	Inches	Inches	
1	Friday, March 20, 2009	0.0955	0.0181	0.0774	0.1083	0.0181	0.0902	0.0879	0.0181	0.0698	0.0791	
					L	ENGTH CHA	ANGE CALCU	JLATIONS				
			Reference			Reference Bar			Reference Bar			
		Specimen 1	Bar 1	Δ Length 1	Specimen 2	2	Δ Length 2	Specimen 3	3	Δ Length 3	Average	
		(.0001 in.)	(.0001 in.)	(0.001%)	(.0001 in.)	(.0001 in.)	(0.001%)	(.0001 in.)	(.0001 in.)	(0.001%)	(.01%)	
28	Thursday, April 16, 2009	0.1171	0.0391	0.0060	0.1298	0.0391	0.0050	0.1091	0.0391	0.0020	0.0043	
32	Monday, April 20, 2009	0.1164	0.0392	-0.0020	0.1292	0.0391	-0.0010	0.1083	0.0391	-0.0060	-0.0030	
35	Thursday, April 23, 2009	0.1161	0.0390	-0.0030	0.1288	0.0390	-0.0040	0.1080	0.0390	-0.0080	-0.0050	
42	Thursday, April 30, 2009	0.1159	0.0391	-0.0060	0.1285	0.0391	-0.0080	0.1077	0.0391	-0.0120	-0.0087	
56	Thursday, May 14, 2009	0.1153	0.0391	-0.0120	0.1280	0.0391	-0.0130	0.1071	0.0391	-0.0180	-0.0143	
84	Thursday, June 11, 2009	0.1108	0.0351	-0.0170	0.1235	0.0351	-0.0180	0.1026	0.0351	-0.0230	-0.0193	
140	Thursday, August 06, 2009	0.1093	0.0351	-0.0320	0.1220	0.0351	-0.0330	0.1012	0.0351	-0.0370	-0.0340	
252	Thursday, November 26, 2009	0.1089	0.0350	-0.0350	0.1217	0.0350	-0.0350	0.1017	0.0350	-0.0310	-0.0337	
476	Thursday, July 08, 2010	0.1850	0.1108	-0.0320	0.1980	0.1108	-0.0300	0.1768	0.1108	-0.0380	-0.0333	

Note: Lowest Reading Value Recorded (Minimum)

	PERMEABILITY - ASTM C 1202									
		Specimen P1	Specimen P1			Specimen P2	Specimen P2			
		Diameter 1	Diameter 2	Measured	Adjusted	Diameter 1	Diameter 2	Measured	Adjusted	Average
Specimen Age	Test date	(.001 in.)	(.001 in.)	Coulombs	Coulombs	(.001 in.)	(.001 in.)	Coulombs	Coulombs	Coulombs
28	Thursday, April 16, 2009	4.022	4.021	2109	1834	4.018	4.019	1912	1665	1749
91	Thursday, June 18, 2009	4.021	4.019	1776	1545	4.018	4.020	1613	1404	1475
365	Friday, March 19, 2010	4.018	4.022	1532	1333	4.019	4.019	1520	1323	1328

278 COMMERCE PARK DRIVE RIDGELAND, MS 39157

BCD JOB NO. _____ 080739

 Mix Number
 Mix 5

 Mix Date
 Tuesday, March 24, 2009

 Mix Time
 8:51 AM

				SHRINK	AGE TESTIN	IG - ASTM C1	57					
	Reference Bar Length (in.)					INITI	AL READING	iS				
	10		Reference			Reference Bar			Reference Bar			
	10	Specimen 1	Bar 1	Δ Length 1	Specimen 2	2	Δ Length 2	Specimen 3	3	∆ Length 3	Average	
Specimen Age	Test date	(.0001 in.)	(.0001 in.)	Inches	(.0001 in.)	(.0001 in.)	Inches	(.0001 in.)	(.0001 in.)	Inches	Inches	
1	Wednesday, March 25, 2009	0.0881	0.0181	0.0700	0.0962	0.0181	0.0781	0.1145	0.0181	0.0964	0.0815	
						LENGTH CHA	NGE CALCU	JLATIONS				
			Reference			Reference Bar			Reference Bar			í l
		Specimen 1	Bar 1	Δ Length 1	Specimen 2	2	Δ Length 2	Specimen 3	3	Δ Length 3	Average	i i
		(.0001 in.)	(.0001 in.)	(0.001%)	(.0001 in.)	(.0001 in.)	(0.001%)	(.0001 in.)	(.0001 in.)	(0.001%)	(.01%)	1
28	Tuesday, April 21, 2009	0.1096	0.0391	0.0050	0.1187	0.0391	0.0150	0.1357	0.0391	0.0020	0.0073	
32	Saturday, April 25, 2009	0.1088	0.0393	-0.0050	0.1178	0.0393	0.0040	0.1349	0.0393	-0.0080	-0.0030	
35	Tuesday, April 28, 2009	0.1085	0.0392	-0.0070	0.1175	0.0392	0.0020	0.1346	0.0392	-0.0100	-0.0050	
42	Tuesday, May 05, 2009	0.1080	0.0391	-0.0110	0.1170	0.0391	-0.0020	0.1341	0.0391	-0.0140	-0.0090	
56	Tuesday, May 19, 2009	0.1066	0.0383	-0.0170	0.1157	0.0383	-0.0070	0.1328	0.0383	-0.0190	-0.0143	
84	Tuesday, June 16, 2009	0.1029	0.0352	-0.0230	0.1118	0.0352	-0.0150	0.1291	0.0352	-0.0250	-0.0210	
140	Tuesday, August 11, 2009	0.1012	0.0349	-0.0370	0.1101	0.0349	-0.0290	0.1275	0.0349	-0.0380	-0.0347	
252	Tuesday, December 01, 2009	0.1008	0.0350	-0.0420	0.1098	0.0350	-0.0330	0.1271	0.0350	-0.0430	-0.0393	
476	Tuesday, July 13, 2010	0.1660	0.0999	-0.0390	0.1752	0.0999	-0.0280	0.1924	0.0999	-0.0390	-0.0353	

Note: Lowest Reading Value Recorded (Minimum)

	PERMEABILITY - ASTM C 1202									
		Specimen P1	Specimen P1			Specimen P2	Specimen P2			
		Diameter 1	Diameter 2	Measured	Adjusted	Diameter 1	Diameter 2	Measured	Adjusted	Average
Specimen Age	Test date	(.001 in.)	(.001 in.)	Coulombs	Coulombs	(.001 in.)	(.001 in.)	Coulombs	Coulombs	Coulombs
28	Tuesday, April 21, 2009	4.020	4.015	3112	2711	3.999	4.022	2934	2565	2638
91	Tuesday, June 23, 2009	4.019	4.016	1517	1322	4.000	4.019	1560	1365	1343
365	Wednesday, March 24, 2010	4.019	4.014	944	823	4.000	4.018	1050	919	871

278 COMMERCE PARK DRIVE RIDGELAND, MS 39157

BCD JOB NO. 080739

Mix Number	Mix 6
Mix Date	Thursday, March 26, 2009
Mix Time	10:15 AM

	SHRINKAGE TESTING - ASTM C157														
	Reference Bar Length (in.)					INITI	AL READING	S							
	10		Reference			Reference Bar			Reference Bar						
	10	Specimen 1	Bar 1	∆ Length 1	Specimen 2	2	Δ Length 2	Specimen 3	3	∆ Length 3	Average				
Specimen Age	Test date	(.0001 in.)	(.0001 in.)	Inches	(.0001 in.)	(.0001 in.)	Inches	(.0001 in.)	(.0001 in.)	Inches	Inches				
1	Friday, March 27, 2009	0.0952	0.0193	0.0759	0.0916	0.0193	0.0723	0.0831	0.0193	0.0638	0.0707				
						LENGTH CHA	NGE CALCU	JLATIONS							
			Reference			Reference Bar			Reference Bar						
		Specimen 1	Bar 1	Δ Length 1	Specimen 2	2	Δ Length 2	Specimen 3	3	Δ Length 3	Average				
		(.0001 in.)	(.0001 in.)	(0.001%)	(.0001 in.)	(.0001 in.)	(0.001%)	(.0001 in.)	(.0001 in.)	(0.001%)	(.01%)				
28	Thursday, April 23, 2009	0.1161	0.0390	0.0120	0.1148	0.0391	0.0340	0.1040	0.0391	0.0110	0.0190				
32	Monday, April 27, 2009	0.1154	0.0391	0.0040	0.1138	0.0391	0.0240	0.1030	0.0391	0.0010	0.0097				
35	Thursday, April 30, 2009	0.1152	0.0391	0.0020	0.1137	0.0391	0.0230	0.1029	0.0391	0.0000	0.0083				
42	Thursday, May 07, 2009	0.1147	0.0391	-0.0030	0.1133	0.0391	0.0190	0.1025	0.0391	-0.0040	0.0040				
56	Thursday, May 21, 2009	0.1133	0.0383	-0.0090	0.1119	0.0383	0.0130	0.1010	0.0383	-0.0110	-0.0023				
84	Thursday, June 18, 2009	0.1099	0.0351	-0.0110	0.1083	0.0351	0.0090	0.0974	0.0351	-0.0150	-0.0057				
140	Thursday, August 13, 2009	0.1085	0.0349	-0.0230	0.1065	0.0349	-0.0070	0.0959	0.0349	-0.0280	-0.0193				
252	Thursday, December 03, 2009	0.1082	0.0350	-0.0270	0.1061	0.0350	-0.0120	0.0955	0.0350	-0.0330	-0.0240				
476	Thursday, July 15, 2010	0.1736	0.0999	-0.0220	0.1713	0.0999	-0.0090	0.1607	0.0999	-0.0300	-0.0203				

Note: Lowest Reading Value Recorded (Minimum)

PERMEABILITY - ASTM C 1202												
		Specimen P1	Specimen P1			Specimen P2	Specimen P2					
		Diameter 1	Diameter 2	Measured	Adjusted	Diameter 1	Diameter 2	Measured	Adjusted	Average		
Specimen Age	Test date	(.001 in.)	(.001 in.)	Coulombs	Coulombs	(.001 in.)	(.001 in.)	Coulombs	Coulombs	Coulombs		
28	Thursday, April 23, 2009	4.021	4.015	2287	1992	4.016	4.020	2648	2307	2149		
91	Thursday, June 25, 2009	4.018	4.012	872	761	4.017	4.022	754	656	708		
365	Friday, March 26, 2010	4.017	4.013	276	241	4.013	4.019	288	251	246		

278 COMMERCE PARK DRIVE RIDGELAND, MS 39157

BCD JOB NO. _____ 080739

 Mix Number
 Mix 7

 Mix Date
 Thursday, March 26, 2009

 Mix Time
 1:21 PM

	SHRINKAGE TESTING - ASTM C157														
	Reference Bar Length (in.)					INITI	AL READING	S							
	10		Reference			Reference Bar			Reference Bar						
	10	Specimen 1	Bar 1	Δ Length 1	Specimen 2	2	Δ Length 2	Specimen 3	3	∆ Length 3	Average				
Specimen Age	Test date	(.0001 in.)	(.0001 in.)	Inches	(.0001 in.)	(.0001 in.)	Inches	(.0001 in.)	(.0001 in.)	Inches	Inches				
1	Friday, March 27, 2009	0.1092	0.0191	0.0901	0.0859	0.0191	0.0668	0.0920	0.0191	0.0729	0.0766				
					l	ENGTH CHA	NGE CALCU	ILATIONS							
			Reference			Reference Bar			Reference Bar						
		Specimen 1	Bar 1	Δ Length 1	Specimen 2	2	Δ Length 2	Specimen 3	3	Δ Length 3	Average				
		(.0001 in.)	(.0001 in.)	(0.001%)	(.0001 in.)	(.0001 in.)	(0.001%)	(.0001 in.)	(.0001 in.)	(0.001%)	(.01%)				
28	Thursday, April 23, 2009	0.1300	0.0391	0.0080	0.1083	0.0391	0.0240	0.1129	0.0391	0.0090	0.0137				
32	Monday, April 27, 2009	0.1292	0.0391	0.0000	0.1075	0.0391	0.0160	0.1121	0.0391	0.0010	0.0057				
35	Thursday, April 30, 2009	0.1290	0.0391	-0.0020	0.1074	0.0391	0.0150	0.1119	0.0391	-0.0010	0.0040				
42	Thursday, May 07, 2009	0.1286	0.0391	-0.0060	0.1070	0.0391	0.0110	0.1116	0.0391	-0.0040	0.0003				
56	Thursday, May 21, 2009	0.1274	0.0383	-0.0100	0.1057	0.0383	0.0060	0.1103	0.0383	-0.0090	-0.0043				
84	Thursday, June 18, 2009	0.1237	0.0351	-0.0150	0.1018	0.0351	-0.0010	0.1066	0.0351	-0.0140	-0.0100				
140	Thursday, August 13, 2009	0.1221	0.0349	-0.0290	0.1003	0.0349	-0.0140	0.1049	0.0349	-0.0290	-0.0240				
252	Thursday, December 03, 2009	0.1217	0.0350	-0.0340	0.0999	0.0350	-0.0190	0.1044	0.0350	-0.0350	-0.0293				
476	Thursday, July 15, 2010	0.1869	0.0999	-0.0310	0.1652	0.0999	-0.0150	0.1695	0.0999	-0.0330	-0.0263				

Note: Lowest Reading Value Recorded (Minimum)

PERMEABILITY - ASTM C 1202												
		Specimen P1	Specimen P1			Specimen P2	Specimen P2					
		Diameter 1	Diameter 2	Measured	Adjusted	Diameter 1	Diameter 2	Measured	Adjusted	Average		
Specimen Age	Test date	(.001 in.)	(.001 in.)	Coulombs	Coulombs	(.001 in.)	(.001 in.)	Coulombs	Coulombs	Coulombs		
28	Thursday, April 23, 2009	4.015	4.015	957	835	4.011	4.015	853	745	790		
91	Thursday, June 25, 2009	4.013	4.019	412	359	4.009	4.018	432	377	368		
365	Friday, March 26, 2010	4.014	4.015	365	318	4.008	4.008	362	317	318		

278 COMMERCE PARK DRIVE RIDGELAND, MS 39157

BCD JOB NO. 080739

 Mix Number
 Mix 8

 Mix Date
 Tuesday, March 31, 2009

 Mix Time
 4:03 PM

	SHRINKAGE TESTING - ASTM C157														
	Reference Bar Length (in.)					INITI	AL READING	S							
	10		Reference			Reference Bar			Reference Bar						
	10	Specimen 1	Bar 1	∆ Length 1	Specimen 2	2	Δ Length 2	Specimen 3	3	∆ Length 3	Average				
Specimen Age	Test date	(.0001 in.)	(.0001 in.)	Inches	(.0001 in.)	(.0001 in.)	Inches	(.0001 in.)	(.0001 in.)	Inches	Inches				
1	Wednesday, April 01, 2009	0.0871	0.0369	0.0502	0.0789	0.0369	0.0420	0.1331	0.0369	0.0962	0.0628				
					l	LENGTH CHA	ANGE CALCU	ILATIONS							
			Reference			Reference Bar			Reference Bar						
		Specimen 1	Bar 1	Δ Length 1	Specimen 2	2	Δ Length 2	Specimen 3	3	Δ Length 3	Average				
		(.0001 in.)	(.0001 in.)	(0.001%)	(.0001 in.)	(.0001 in.)	(0.001%)	(.0001 in.)	(.0001 in.)	(0.001%)	(.01%)				
28	Tuesday, April 28, 2009	0.0896	0.0391	0.0030	0.0813	0.0391	0.0020	0.1356	0.0391	0.0030	0.0027				
32	Saturday, May 02, 2009	0.0887	0.0392	-0.0070	0.0803	0.0392	-0.0090	0.1347	0.0392	-0.0070	-0.0077				
35	Tuesday, May 05, 2009	0.0884	0.0391	-0.0090	0.0801	0.0391	-0.0100	0.1344	0.0391	-0.0090	-0.0093				
42	Tuesday, May 12, 2009	0.0880	0.0391	-0.0130	0.0797	0.0391	-0.0140	0.1340	0.0391	-0.0130	-0.0133				
56	Tuesday, May 26, 2009	0.0865	0.0382	-0.0190	0.0781	0.0382	-0.0210	0.1326	0.0382	-0.0180	-0.0193				
84	Tuesday, June 23, 2009	0.0828	0.0351	-0.0250	0.0744	0.0351	-0.0270	0.1288	0.0351	-0.0250	-0.0257				
140	Tuesday, August 18, 2009	0.0812	0.0349	-0.0390	0.0726	0.0349	-0.0430	0.1272	0.0349	-0.0390	-0.0403				
252	Tuesday, December 08, 2009	0.0811	0.0350	-0.0410	0.0723	0.0350	-0.0470	0.1268	0.0350	-0.0440	-0.0440				
476	Tuesday, July 20, 2010	0.1468	0.1004	-0.0380	0.1380	0.1003	-0.0430	0.1928	0.1003	-0.0370	-0.0393				

Note: Lowest Reading Value Recorded (Minimum)

PERMEABILITY - ASTM C 1202												
		Specimen P1	Specimen P1			Specimen P2	Specimen P2					
		Diameter 1	Diameter 2	Measured	Adjusted	Diameter 1	Diameter 2	Measured	Adjusted	Average		
Specimen Age	Test date	(.001 in.)	(.001 in.)	Coulombs	Coulombs	(.001 in.)	(.001 in.)	Coulombs	Coulombs	Coulombs		
28	Tuesday, April 28, 2009	4.020	4.018	2240	1950	4.015	4.009	2603	2274	2112		
91	Tuesday, June 30, 2009	4.020	4.019	1453	1265	4.018	4.012	1558	1359	1312		
365	Wednesday, March 31, 2010	3.999	4.008	1269	1113	3.998	4.018	1320	1156	1134		

278 COMMERCE PARK DRIVE RIDGELAND, MS 39157

BCD JOB NO. 080739

Mix Number	Mix 9
Mix Date	Thursday, April 02, 2009
Mix Time	8:42 AM

	SHRINKAGE TESTING - ASTM C157														
	Reference Bar Length (in.)					INITI	AL READING	S							
	10		Reference			Reference Bar			Reference Bar						
	10	Specimen 1	Bar 1	∆ Length 1	Specimen 2	2	Δ Length 2	Specimen 3	3	∆ Length 3	Average				
Specimen Age	Test date	(.0001 in.)	(.0001 in.)	Inches	(.0001 in.)	(.0001 in.)	Inches	(.0001 in.)	(.0001 in.)	Inches	Inches				
1	Friday, April 03, 2009	0.0757	0.0370	0.0387	0.0945	0.0370	0.0575	0.1132	0.0370	0.0762	0.0575				
					l	LENGTH CHA	ANGE CALCU	ILATIONS							
			Reference			Reference Bar			Reference Bar						
		Specimen 1	Bar 1	Δ Length 1	Specimen 2	2	Δ Length 2	Specimen 3	3	Δ Length 3	Average				
		(.0001 in.)	(.0001 in.)	(0.001%)	(.0001 in.)	(.0001 in.)	(0.001%)	(.0001 in.)	(.0001 in.)	(0.001%)	(.01%)				
28	Thursday, April 30, 2009	0.0782	0.0391	0.0040	0.0983	0.0391	0.0170	0.1158	0.0391	0.0050	0.0087				
32	Monday, May 04, 2009	0.0770	0.0391	-0.0080	0.0972	0.0391	0.0060	0.1149	0.0391	-0.0040	-0.0020				
35	Thursday, May 07, 2009	0.0769	0.0391	-0.0090	0.0970	0.0391	0.0040	0.1146	0.0391	-0.0070	-0.0040				
42	Thursday, May 14, 2009	0.0762	0.0391	-0.0160	0.0965	0.0391	-0.0010	0.1141	0.0391	-0.0120	-0.0097				
56	Thursday, May 28, 2009	0.0746	0.0380	-0.0210	0.0947	0.0380	-0.0080	0.1126	0.0381	-0.0170	-0.0153				
84	Thursday, June 25, 2009	0.0712	0.0352	-0.0270	0.0915	0.0352	-0.0120	0.1092	0.0352	-0.0220	-0.0203				
140	Thursday, August 20, 2009	0.0699	0.0348	-0.0360	0.0899	0.0348	-0.0240	0.1075	0.0348	-0.0350	-0.0317				
252	Thursday, December 10, 2009	0.0695	0.0350	-0.0420	0.0897	0.0350	-0.0280	0.1073	0.0350	-0.0390	-0.0363				
476	Thursday, July 22, 2010	0.1355	0.1004	-0.0360	0.1554	0.1004	-0.0250	0.1731	0.1004	-0.0350	-0.0320				

Note: Lowest Reading Value Recorded (Minimum)

PERMEABILITY - ASTM C 1202												
		Specimen P1	Specimen P1			Specimen P2	Specimen P2					
		Diameter 1	Diameter 2	Measured	Adjusted	Diameter 1	Diameter 2	Measured	Adjusted	Average		
Specimen Age	Test date	(.001 in.)	(.001 in.)	Coulombs	Coulombs	(.001 in.)	(.001 in.)	Coulombs	Coulombs	Coulombs		
28	Thursday, April 30, 2009	4.012	4.031	2011	1749	4.012	4.019	2187	1907	1828		
91	Thursday, July 02, 2009	4.029	4.018	1257	1092	4.021	4.011	1246	1086	1089		
365	Friday, April 02, 2010	4.007	4.012	359	314	4.017	4.009	375	327	321		

278 COMMERCE PARK DRIVE RIDGELAND, MS 39157

BCD JOB NO. 080739

Mix Number	Mix 10
Mix Date	Thursday, April 02, 2009
Mix Time	10:43 AM

	SHRINKAGE TESTING - ASTM C157														
	Reference Bar Length (in.)					INITI	AL READING	S							
	10		Reference			Reference Bar			Reference Bar						
	10	Specimen 1	Bar 1	∆ Length 1	Specimen 2	2	Δ Length 2	Specimen 3	3	∆ Length 3	Average				
Specimen Age	Test date	(.0001 in.)	(.0001 in.)	Inches	(.0001 in.)	(.0001 in.)	Inches	(.0001 in.)	(.0001 in.)	Inches	Inches				
1	Friday, April 03, 2009	0.0732	0.0370	0.0362	0.0763	0.0370	0.0393	0.0762	0.0370	0.0392	0.0382				
					l	LENGTH CHA	ANGE CALCU	ILATIONS							
			Reference			Reference Bar			Reference Bar						
		Specimen 1	Bar 1	Δ Length 1	Specimen 2	2	Δ Length 2	Specimen 3	3	Δ Length 3	Average				
		(.0001 in.)	(.0001 in.)	(0.001%)	(.0001 in.)	(.0001 in.)	(0.001%)	(.0001 in.)	(.0001 in.)	(0.001%)	(.01%)				
28	Thursday, April 30, 2009	0.0762	0.0391	0.0090	0.0806	0.0391	0.0220	0.0800	0.0391	0.0170	0.0160				
32	Monday, May 04, 2009	0.0752	0.0391	-0.0010	0.0800	0.0391	0.0160	0.0790	0.0391	0.0070	0.0073				
35	Thursday, May 07, 2009	0.0750	0.0391	-0.0030	0.0795	0.0392	0.0100	0.0788	0.0391	0.0050	0.0040				
42	Thursday, May 14, 2009	0.0745	0.0391	-0.0080	0.0790	0.0391	0.0060	0.0782	0.0391	-0.0010	-0.0010				
56	Thursday, May 28, 2009	0.0730	0.0380	-0.0120	0.0774	0.0380	0.0010	0.0766	0.0380	-0.0060	-0.0057				
84	Thursday, June 25, 2009	0.0695	0.0352	-0.0190	0.0739	0.0352	-0.0060	0.0732	0.0352	-0.0120	-0.0123				
140	Thursday, August 20, 2009	0.0679	0.0348	-0.0310	0.0725	0.0348	-0.0160	0.0715	0.0348	-0.0250	-0.0240				
252	Thursday, December 10, 2009	0.0676	0.0350	-0.0360	0.0720	0.0350	-0.0230	0.0712	0.0350	-0.0300	-0.0297				
476	Thursday, July 22, 2010	0.1332	0.1004	-0.0340	0.1376	0.1004	-0.0210	0.1370	0.1004	-0.0260	-0.0270				

Note: Lowest Reading Value Recorded (Minimum)

	PERMEABILITY - ASTM C 1202												
		Specimen P1	Specimen P1			Specimen P2	Specimen P2						
		Diameter 1	Diameter 2	Measured	Adjusted	Diameter 1	Diameter 2	Measured	Adjusted	Average			
Specimen Age	Test date	(.001 in.)	(.001 in.)	Coulombs	Coulombs	(.001 in.)	(.001 in.)	Coulombs	Coulombs	Coulombs			
28	Thursday, April 30, 2009	4.010	4.011	2187	1912	4.010	4.011	2836	2480	2196			
91	Thursday, July 02, 2009	4.013	4.025	963	838	4.017	4.021	886	771	805			
365	Friday, April 02, 2010	4.011	4.014	212	185	3.999	4.016	220	193	189			

278 COMMERCE PARK DRIVE RIDGELAND, MS 39157

BCD JOB NO. ______ 080739

 Mix Number
 Mix 11

 Mix Date
 Tuesday, April 07, 2009

 Mix Time
 12:13 PM

				SHRINK	AGE TESTIN	G - ASTM C1	57							
	Reference Bar Length (in.)					INITI	AL READING	S						
	10		Reference			Reference Bar			Reference Bar					
	10	Specimen 1	Bar 1	∆ Length 1	Specimen 2	2	Δ Length 2	Specimen 3	3	Δ Length 3	Average			
Specimen Age	Test date	(.0001 in.)	(.0001 in.)	Inches	(.0001 in.)	(.0001 in.)	Inches	(.0001 in.)	(.0001 in.)	Inches	Inches			
1	Wednesday, April 08, 2009	0.0933	0.0373	0.0560	0.0760	0.0373	0.0387	0.0920	0.0373	0.0547	0.0498			
			LENGTH CHANGE CALCULATIONS											
			Reference			Reference Bar			Reference Bar					
		Specimen 1	Bar 1	Δ Length 1	Specimen 2	2	Δ Length 2	Specimen 3	3	Δ Length 3	Average			
		(.0001 in.)	(.0001 in.)	(0.001%)	(.0001 in.)	(.0001 in.)	(0.001%)	(.0001 in.)	(.0001 in.)	(0.001%)	(.01%)			
28	Tuesday, May 05, 2009	0.0968	0.0391	0.0170	0.0792	0.0391	0.0140	0.0958	0.0391	0.0200	0.0170			
32	Saturday, May 09, 2009	0.0963	0.0391	0.0120	0.0787	0.0391	0.0090	0.0954	0.0391	0.0160	0.0123			
35	Tuesday, May 12, 2009	0.0962	0.0391	0.0110	0.0786	0.0391	0.0080	0.0953	0.0391	0.0150	0.0113			
42	Tuesday, May 19, 2009	0.0951	0.0383	0.0080	0.0776	0.0383	0.0060	0.0942	0.0383	0.0120	0.0087			
56	Tuesday, June 02, 2009	0.0943	0.0380	0.0030	0.0768	0.0380	0.0010	0.0935	0.0380	0.0080	0.0040			
84	Tuesday, June 30, 2009	0.0912	0.0352	0.0000	0.0737	0.0352	-0.0020	0.0902	0.0352	0.0030	0.0003			
140	Tuesday, August 25, 2009	0.0893	0.0349	-0.0160	0.0718	0.0349	-0.0180	0.0884	0.0349	-0.0120	-0.0153			
252	Tuesday, December 15, 2009	0.0890	0.0353	-0.0230	0.0713	0.0353	-0.0270	0.0880	0.0353	-0.0200	-0.0233			
476	Tuesday, July 27, 2010	0.1540	0.1003	-0.0230	0.1363	0.1003	-0.0270	0.1532	0.1003	-0.0180	-0.0227			

Note: Lowest Reading Value Recorded (Minimum)

PERMEABILITY - ASTM C 1202													
		Specimen P1	Specimen P1			Specimen P2	Specimen P2						
		Diameter 1	Diameter 2	Measured	Adjusted	Diameter 1	Diameter 2	Measured	Adjusted	Average			
Specimen Age	Test date	(.001 in.)	(.001 in.)	Coulombs	Coulombs	(.001 in.)	(.001 in.)	Coulombs	Coulombs	Coulombs			
28	Tuesday, May 05, 2009	4.024	4.010	488	425	4.003	4.002	462	406	415			
91	Tuesday, July 07, 2009	4.022	4.012	291	254	4.005	4.004	284	249	251			
375	Saturday, April 17, 2010	4.009	4.011	245	214	4.003	4.001	221	194	204			

278 COMMERCE PARK DRIVE RIDGELAND, MS 39157

BCD JOB NO. 080739

Mix Number	Mix 12
Mix Date	Thursday, April 09, 2009
Mix Time	10:19 AM

				SHRINK	AGE TESTIN	IG - ASTM C1	57							
	Reference Bar Length (in.)					INITI	AL READING	S						
	10		Reference			Reference Bar			Reference Bar					
	10	Specimen 1	Bar 1	∆ Length 1	Specimen 2	2	Δ Length 2	Specimen 3	3	∆ Length 3	Average			
Specimen Age	Test date	(.0001 in.)	(.0001 in.)	Inches	(.0001 in.)	(.0001 in.)	Inches	(.0001 in.)	(.0001 in.)	Inches	Inches			
1	Friday, April 10, 2009	0.1202	0.0373	0.0829	0.0901	0.0373	0.0528	0.0895	0.0373	0.0522	0.0626			
			LENGTH CHANGE CALCULATIONS											
			Reference			Reference Bar			Reference Bar					
		Specimen 1	Bar 1	Δ Length 1	Specimen 2	2	Δ Length 2	Specimen 3	3	Δ Length 3	Average			
		(.0001 in.)	(.0001 in.)	(0.001%)	(.0001 in.)	(.0001 in.)	(0.001%)	(.0001 in.)	(.0001 in.)	(0.001%)	(.01%)			
28	Thursday, May 07, 2009	0.1223	0.0391	0.0030	0.0932	0.0391	0.0130	0.0928	0.0391	0.0150	0.0103			
32	Monday, May 11, 2009	0.1212	0.0391	-0.0080	0.0922	0.0391	0.0030	0.0917	0.0391	0.0040	-0.0003			
35	Thursday, May 14, 2009	0.1207	0.0391	-0.0130	0.0917	0.0391	-0.0020	0.0913	0.0391	0.0000	-0.0050			
42	Thursday, May 21, 2009	0.1195	0.0383	-0.0170	0.0905	0.0383	-0.0060	0.0900	0.0383	-0.0050	-0.0093			
56	Thursday, June 04, 2009	0.1187	0.0379	-0.0210	0.0898	0.0379	-0.0090	0.0890	0.0379	-0.0110	-0.0137			
84	Thursday, July 02, 2009	0.1150	0.0352	-0.0310	0.0860	0.0352	-0.0200	0.0854	0.0352	-0.0200	-0.0237			
140	Thursday, August 27, 2009	0.1131	0.0349	-0.0470	0.0840	0.0349	-0.0370	0.0835	0.0349	-0.0360	-0.0400			
252	Thursday, December 17, 2009	0.1128	0.0351	-0.0520	0.0838	0.0351	-0.0410	0.0834	0.0351	-0.0390	-0.0440			
476	Thursday, July 29, 2010	0.1781	0.1004	-0.0520	0.1492	0.1004	-0.0400	0.1486	0.1004	-0.0400	-0.0440			

Note: Lowest Reading Value Recorded (Minimum)

PERMEABILITY - ASTM C 1202													
		Specimen P1	Specimen P1			Specimen P2	Specimen P2						
		Diameter 1	Diameter 2	Measured	Adjusted	Diameter 1	Diameter 2	Measured	Adjusted	Average			
Specimen Age	Test date	(.001 in.)	(.001 in.)	Coulombs	Coulombs	(.001 in.)	(.001 in.)	Coulombs	Coulombs	Coulombs			
28	Thursday, May 07, 2009	4.003	3.999	2586	2272	3.994	4.003	3161	2780	2526			
91	Thursday, July 09, 2009	4.004	4.002	1501	1317	3.998	4.005	1466	1288	1302			
375	Monday, April 19, 2010	4.001	4.006	754	662	3.999	4.001	783	688	675			

278 COMMERCE PARK DRIVE RIDGELAND, MS 39157

BCD JOB NO. 080739

Mix Number	Mix 13
Mix Date	Thursday, April 09, 2009
Mix Time	1:40 PM

				SHRINK	AGE TESTIN	G - ASTM C1	57								
	Reference Bar Length (in.)					INITI	AL READING	iS							
	10		Reference			Reference Bar			Reference Bar						
	10	Specimen 1	Bar 1	Δ Length 1	Specimen 2	2	Δ Length 2	Specimen 3	3	∆ Length 3	Average				
Specimen Age	Test date	(.0001 in.)	(.0001 in.)	Inches	(.0001 in.)	(.0001 in.)	Inches	(.0001 in.)	(.0001 in.)	Inches	Inches				
1	Friday, April 10, 2009	0.0616	0.0373	0.0243	0.0980	0.0373	0.0607	0.1145	0.0373	0.0772	0.0541				
			LENGTH CHANGE CALCULATIONS												
			Reference			Reference Bar			Reference Bar						
		Specimen 1	Bar 1	Δ Length 1	Specimen 2	2	Δ Length 2	Specimen 3	3	Δ Length 3	Average				
		(.0001 in.)	(.0001 in.)	(0.001%)	(.0001 in.)	(.0001 in.)	(0.001%)	(.0001 in.)	(.0001 in.)	(0.001%)	(.01%)				
28	Thursday, May 07, 2009	0.0649	0.0391	0.0150	0.1012	0.0391	0.0140	0.1169	0.0391	0.0060	0.0117				
32	Monday, May 11, 2009	0.0638	0.0391	0.0040	0.1003	0.0391	0.0050	0.1160	0.0391	-0.0030	0.0020				
35	Thursday, May 14, 2009	0.0635	0.0391	0.0010	0.0999	0.0391	0.0010	0.1156	0.0391	-0.0070	-0.0017				
42	Thursday, May 21, 2009	0.0623	0.0384	-0.0040	0.0987	0.0383	-0.0030	0.1146	0.0383	-0.0090	-0.0053				
56	Thursday, June 04, 2009	0.0613	0.0379	-0.0090	0.0978	0.0379	-0.0080	0.1135	0.0379	-0.0160	-0.0110				
84	Thursday, July 02, 2009	0.0581	0.0352	-0.0140	0.0944	0.0352	-0.0150	0.1104	0.0352	-0.0200	-0.0163				
140	Thursday, August 27, 2009	0.0566	0.0349	-0.0260	0.0926	0.0349	-0.0300	0.1087	0.0349	-0.0340	-0.0300				
252	Thursday, December 17, 2009	0.0564	0.0351	-0.0300	0.0924	0.0351	-0.0340	0.1085	0.0351	-0.0380	-0.0340				
476	Thursday, July 29, 2010	0.1220	0.1004	-0.0270	0.1578	0.1004	-0.0330	0.1737	0.1004	-0.0390	-0.0330				

Note: Lowest Reading Value Recorded (Minimum)

PERMEABILITY - ASTM C 1202													
		Specimen P1	Specimen P1			Specimen P2	Specimen P2						
		Diameter 1	Diameter 2	Measured	Adjusted	Diameter 1	Diameter 2	Measured	Adjusted	Average			
Specimen Age	Test date	(.001 in.)	(.001 in.)	Coulombs	Coulombs	(.001 in.)	(.001 in.)	Coulombs	Coulombs	Coulombs			
28	Thursday, May 07, 2009	4.002	3.992	3032	2669	3.999	3.994	2569	2262	2465			
91	Thursday, July 09, 2009	4.001	3.995	910	801	4.002	3.998	947	832	816			
376	Tuesday, April 20, 2010	4.000	4.001	314	276	4.003	3.999	307	270	273			

278 COMMERCE PARK DRIVE RIDGELAND, MS 39157

BCD JOB NO. 080739

Mix Number	Mix 14
Mix Date	Tuesday, April 14, 2009
Mix Time	1:16 PM

				SHRINK	AGE TESTIN	IG - ASTM C1	57								
	Reference Bar Length (in.)					INITIA	AL READING	S							
	10		Reference			Reference Bar			Reference Bar						
	10	Specimen 1	Bar 1	∆ Length 1	Specimen 2	2	Δ Length 2	Specimen 3	3	∆ Length 3	Average				
Specimen Age	Test date	(.0001 in.)	(.0001 in.)	Inches	(.0001 in.)	(.0001 in.)	Inches	(.0001 in.)	(.0001 in.)	Inches	Inches				
1	Wednesday, April 15, 2009	0.0565	0.0391	0.0174	0.1248	0.0391	0.0857	0.0864	0.0391	0.0473	0.0501				
			LENGTH CHANGE CALCULATIONS												
			Reference			Reference Bar			Reference Bar						
		Specimen 1	Bar 1	Δ Length 1	Specimen 2	2	Δ Length 2	Specimen 3	3	Δ Length 3	Average				
		(.0001 in.)	(.0001 in.)	(0.001%)	(.0001 in.)	(.0001 in.)	(0.001%)	(.0001 in.)	(.0001 in.)	(0.001%)	(.01%)				
28	Tuesday, May 12, 2009	0.0570	0.0391	0.0050	0.1250	0.0391	0.0020	0.0869	0.0391	0.0050	0.0040				
32	Saturday, May 16, 2009	0.0563	0.0391	-0.0020	0.1243	0.0391	-0.0050	0.0862	0.0391	-0.0020	-0.0030				
35	Tuesday, May 19, 2009	0.0552	0.0383	-0.0050	0.1232	0.0383	-0.0080	0.0849	0.0383	-0.0070	-0.0067				
42	Tuesday, May 26, 2009	0.0546	0.0382	-0.0100	0.1226	0.0382	-0.0130	0.0843	0.0382	-0.0120	-0.0117				
56	Tuesday, June 09, 2009	0.0531	0.0374	-0.0170	0.1213	0.0374	-0.0180	0.0831	0.0374	-0.0160	-0.0170				
84	Tuesday, July 07, 2009	0.0500	0.0352	-0.0260	0.1181	0.0352	-0.0280	0.0799	0.0352	-0.0260	-0.0267				
140	Tuesday, September 01, 2009	0.0482	0.0348	-0.0400	0.1162	0.0348	-0.0430	0.0780	0.0348	-0.0410	-0.0413				
252	Tuesday, December 22, 2009	0.0479	0.0350	-0.0450	0.1159	0.0350	-0.0480	0.0777	0.0350	-0.0460	-0.0463				
476	Tuesday, August 03, 2010	0.1131	0.1003	-0.0460	0.1813	0.1003	-0.0470	0.1430	0.1003	-0.0460	-0.0463				

Note: Lowest Reading Value Recorded (Minimum)

PERMEABILITY - ASTM C 1202													
		Specimen P1	Specimen P1			Specimen P2	Specimen P2						
		Diameter 1	Diameter 2	Measured	Adjusted	Diameter 1	Diameter 2	Measured	Adjusted	Average			
Specimen Age	Test date	(.001 in.)	(.001 in.)	Coulombs	Coulombs	(.001 in.)	(.001 in.)	Coulombs	Coulombs	Coulombs			
28	Tuesday, May 12, 2009	4.020	4.019	1984	1727	4.026	3.998	1953	1706	1717			
91	Tuesday, July 14, 2009	4.021	4.005	1586	1385	4.009	4.025	1571	1369	1377			
371	Tuesday, April 20, 2010	4.019	4.002	1382	1208	4.003	4.007	1338	1173	1191			

278 COMMERCE PARK DRIVE RIDGELAND, MS 39157

BCD JOB NO. 080739

 Mix Number
 Mix 15.1

 Mix Date
 Tuesday, August 11, 2009

 Mix Time
 9:29 AM

				SHRINK	AGE TESTIN	IG - ASTM C1	157							
	Reference Bar Length (in.)					INITI	AL READING	S						
	10		Reference			Reference Bar			Reference Bar					
	10	Specimen 1	Bar 1	∆ Length 1	Specimen 2	2	Δ Length 2	Specimen 3	3	∆ Length 3	Average			
Specimen Age	Test date	(.0001 in.)	(.0001 in.)	Inches	(.0001 in.)	(.0001 in.)	Inches	(.0001 in.)	(.0001 in.)	Inches	Inches			
1	Wednesday, August 12, 2009	0.0415	0.0349	0.0066	0.0529	0.0349	0.0180	0.0528	0.0349	0.0179	0.0142			
			LENGTH CHANGE CALCULATIONS											
			Reference			Reference Bar			Reference Bar					
		Specimen 1	Bar 1	Δ Length 1	Specimen 2	2	Δ Length 2	Specimen 3	3	Δ Length 3	Average			
		(.0001 in.)	(.0001 in.)	(0.001%)	(.0001 in.)	(.0001 in.)	(0.001%)	(.0001 in.)	(.0001 in.)	(0.001%)	(.01%)			
28	Tuesday, September 08, 2009	0.0421	0.0349	0.0060	0.0534	0.0349	0.0050	0.0536	0.0349	0.0080	0.0063			
32	Saturday, September 12, 2009	0.0415	0.0349	0.0000	0.0528	0.0349	-0.0010	0.0530	0.0349	0.0020	0.0003			
35	Tuesday, September 15, 2009	0.0412	0.0348	-0.0020	0.0524	0.0348	-0.0040	0.0527	0.0348	0.0000	-0.0020			
42	Tuesday, September 22, 2009	0.0410	0.0348	-0.0040	0.0522	0.0348	-0.0060	0.0524	0.0348	-0.0030	-0.0043			
56	Tuesday, October 06, 2009	0.0404	0.0349	-0.0110	0.0517	0.0349	-0.0120	0.0518	0.0349	-0.0100	-0.0110			
84	Tuesday, November 03, 2009	0.0399	0.0350	-0.0170	0.0512	0.0350	-0.0180	0.0514	0.0350	-0.0150	-0.0167			
140	Tuesday, December 29, 2009	0.0394	0.0351	-0.0230	0.0506	0.0351	-0.0250	0.0507	0.0351	-0.0230	-0.0237			
252	Tuesday, April 20, 2010	0.0393	0.0351	-0.0240	0.0507	0.0351	-0.0240	0.0509	0.0351	-0.0210	-0.0230			
476	Tuesday, November 30, 2010	0.1053	0.1013	-0.0260	0.1167	0.1013	-0.0260	0.1171	0.1013	-0.0210	-0.0243			

Note: Lowest Reading Value Recorded (Minimum)

				PERMEABILITY	- ASTM C 1202					
		Specimen P1	Specimen P1			Specimen P2	Specimen P2			
		Diameter 1	Diameter 2	Measured	Adjusted	Diameter 1	Diameter 2	Measured	Adjusted	Average
Specimen Age	Test date	(.001 in.)	(.001 in.)	Coulombs	Coulombs	(.001 in.)	(.001 in.)	Coulombs	Coulombs	Coulombs
28	Tuesday, September 08, 2009	4.026	3.973	769	676	3.990	4.004	855	753	714
91	Tuesday, November 10, 2009	4.002	3.999	526	462	3.993	4.005	485	426	444
365	Wednesday, August 11, 2010	3.999	3.998	342	301	3.994	3.998	403	355	328

278 COMMERCE PARK DRIVE RIDGELAND, MS 39157

BUS: (601) 856-2332 FAX: (601) 856-3552

BCD JOB NO.	080739
Mix Number	Mix 16
Mix Date	Thursday, April 23, 2009
Mix Time	8:44 AM

				SHRIN	KAGE TES	TING - AST	M C157					
	Reference Bar Length (in.)					11	NITIAL REA	DINGS				
	10		Reference			Reference						
	10	Specimen 1	Bar 1	Δ Length 1	Specimen 2	Bar 2	Δ Length 2	Specimen 3	Reference Bar 3	Δ Length 3	Average	
Specimen Age	Test date	(.0001 in.)	(.0001 in.)	Inches	(.0001 in.)	(.0001 in.)	Inches	(.0001 in.)	(.0001 in.)	Inches	Inches	
1	Friday, April 24, 2009	0.1323	0.0392	0.0931	0.1039	0.0392	0.0647	0.1138	0.0392	0.0746	0.0775	
						LENGTH	CHANGE C/	ALCULATIO	NS			
			Reference			Reference						
		Specimen 1	Bar 1	Δ Length 1	Specimen 2	Bar 2	Δ Length 2	Specimen 3	Reference Bar 3	Δ Length 3	Average	
		(.0001 in.)	(.0001 in.)	(0.001%)	(.0001 in.)	(.0001 in.)	(0.001%)	(.0001 in.)	(.0001 in.)	(0.001%)	(.01%)	
28	Thursday, May 21, 2009	0.1330	0.0383	0.0160	0.1047	0.0383	0.0170	0.1142	0.0383	0.0130	0.0153	
32	Monday, May 25, 2009	0.1322	0.0384	0.0070	0.1040	0.0384	0.0090	0.1135	0.0383	0.0060	0.0073	
35	Thursday, May 28, 2009	0.1322	0.0386	0.0050	0.1039	0.0385	0.0070	0.1130	0.0380	0.0040	0.0053	
42	Thursday, June 04, 2009	0.1312	0.0379	0.0020	0.1030	0.0379	0.0040	0.1126	0.0379	0.0010	0.0023	
56	Thursday, June 18, 2009	0.1275	0.0351	-0.0070	0.0993	0.0351	-0.0050	0.1089	0.0351	-0.0080	-0.0067	
84	Thursday, July 16, 2009	0.1258	0.0350	-0.0230	0.0978	0.0350	-0.0190	0.1074	0.0350	-0.0220	-0.0213	
140	Thursday, September 10, 2009	0.1250	0.0349	-0.0300	0.0968	0.0349	-0.0280	0.1066	0.0349	-0.0290	-0.0290	
252	Thursday, December 31, 2009	0.1248	0.0352	-0.0350	0.0966	0.0352	-0.0330	0.1065	0.0352	-0.0330	-0.0337	
476	Thursday, August 12, 2010	0.1900	0.1002	-0.0330	0.1619	0.1002	-0.0300	0.1719	0.1002	-0.0290	-0.0307	

Note: Lowest Reading Value Recorded (Minimum)

				PERMEABI	LITY - ASTM C	1202				
		Specimen P1	Specimen P1			Specimen P2	Specimen P2			
		Diameter 1	Diameter 2	Measured	Adjusted	Diameter 1	Diameter 2	Measured		Average
Specimen Age	Test date	(.001 in.)	(.001 in.)	Coulombs	Coulombs	(.001 in.)	(.001 in.)	Coulombs	Adjusted Coulombs	Coulombs
28	Thursday, May 21, 2009	4.014	4.016	1741	1519	4.004	4.033	1641	1429	1474
91	Thursday, July 23, 2009	4.018	4.015	1350	1177	4.008	4.027	1276	1112	1144
365	Friday, April 23, 2010	4.013	4.009	1143	999	4.009	4.012	1267	1108	1053

278 COMMERCE PARK DRIVE RIDGELAND, MS 39157

 BCD JOB NO.
 080739

 Mix Number
 Mix 17

 Mix Date
 Tuesday, April 28, 2009

 Mix Time
 12:10 PM

				SHRI	NKAGE TES	TING - AST	M C157					
	Reference Bar Length (in.)						NITIAL READ	DINGS				
	10		Reference			Reference						
	10	Specimen 1	Bar 1	Δ Length 1	Specimen 2	Bar 2	Δ Length 2	Specimen 3	Reference Bar 3	∆ Length 3	Average	1
Specimen Age	Test date	(.0001 in.)	(.0001 in.)	Inches	(.0001 in.)	(.0001 in.)	Inches	(.0001 in.)	(.0001 in.)	Inches	Inches	1
1	Wednesday, April 29, 2009	0.0832	0.0392	0.0440	0.0945	0.0392	0.0553	0.0854	0.0392	0.0462	0.0485	
						LENGTH	CHANGE CA	LCULATION	S			
			Reference			Reference						
		Specimen 1	Bar 1	Δ Length 1	Specimen 2	Bar 2	Δ Length 2	Specimen 3	Reference Bar 3	Δ Length 3	Average	
		(.0001 in.)	(.0001 in.)	(0.001%)	(.0001 in.)	(.0001 in.)	(0.001%)	(.0001 in.)	(.0001 in.)	(0.001%)	(.01%)	
28	Tuesday, May 26, 2009	0.0838	0.0382	0.0160	0.0940	0.0382	0.0050	0.0847	0.0382	0.0030	0.0080	
32	Saturday, May 30, 2009	0.0832	0.0385	0.0070	0.0933	0.0385	-0.0050	0.0841	0.0385	-0.0060	-0.0013	
35	Tuesday, June 02, 2009	0.0826	0.0380	0.0060	0.0925	0.0380	-0.0080	0.0834	0.0380	-0.0080	-0.0033	
42	Tuesday, June 09, 2009	0.0819	0.0350	0.0290	0.0893	0.0377	-0.0370	0.0799	0.0350	-0.0130	-0.0070	
56	Tuesday, June 23, 2009	0.0786	0.0351	-0.0050	0.0888	0.0351	-0.0160	0.0794	0.0351	-0.0190	-0.0133	
84	Tuesday, July 21, 2009	0.0765	0.0351	-0.0260	0.0870	0.0351	-0.0340	0.0778	0.0351	-0.0350	-0.0317	
140	Tuesday, September 15, 2009	0.0756	0.0348	-0.0320	0.0861	0.0348	-0.0400	0.0768	0.0348	-0.0420	-0.0380	
252	Tuesday, January 05, 2010	0.0754	0.0351	-0.0370	0.0859	0.0351	-0.0450	0.0765	0.0351	-0.0480	-0.0433	
476	Tuesday, August 17, 2010	0.1408	0.1000	-0.0320	0.1512	0.1000	-0.0410	0.1418	0.1000	-0.0440	-0.0390	

Note: Lowest Reading Value Recorded (Minimum)

				PERMEABI	LITY - ASTM C 1	202				
		Specimen P1	Specimen P1			Specimen P2	Specimen P2			
		Diameter 1	Diameter 2	Measured	Adjusted	Diameter 1	Diameter 2	Measured		Average
Specimen Age	Test date	(.001 in.)	(.001 in.)	Coulombs	Coulombs	(.001 in.)	(.001 in.)	Coulombs	Adjusted Coulombs	Coulombs
28	Tuesday, May 26, 2009	4.011	4.015	1925	1681	3.993	4.031	1802	1574	1628
91	Tuesday, July 28, 2009	4.012	4.017	1461	1275	4.015	4.002	1637	1433	1354
365	Wednesday, April 28, 2010	4.001	4.012	1287	1127	4.012	4.004	1556	1362	1245

278 COMMERCE PARK DRIVE RIDGELAND, MS 39157

 BCD JOB NO.
 080739

 Mix Number
 Mix 18

 Mix Date
 Tuesday, April 28, 2009

 Mix Time
 3:07 PM

				SHRI	NKAGE TES	TING - AST	M C157					
	Reference Bar Length (in.)						NITIAL READ	DINGS				
	10		Reference			Reference						
	10	Specimen 1	Bar 1	Δ Length 1	Specimen 2	Bar 2	Δ Length 2	Specimen 3	Reference Bar 3	Δ Length 3	Average	
Specimen Age	Test date	(.0001 in.)	(.0001 in.)	Inches	(.0001 in.)	(.0001 in.)	Inches	(.0001 in.)	(.0001 in.)	Inches	Inches	
1	Wednesday, April 29, 2009	0.0516	0.0392	0.0124	0.0615	0.0392	0.0223	0.0801	0.0392	0.0409	0.0252	
						LENGTH	CHANGE CA	ALCULATION	IS			
			Reference			Reference						
		Specimen 1	Bar 1	Δ Length 1	Specimen 2	Bar 2	Δ Length 2	Specimen 3	Reference Bar 3	Δ Length 3	Average	
		(.0001 in.)	(.0001 in.)	(0.001%)	(.0001 in.)	(.0001 in.)	(0.001%)	(.0001 in.)	(.0001 in.)	(0.001%)	(.01%)	
28	Tuesday, May 26, 2009	0.0514	0.0382	0.0080	0.0626	0.0382	0.0210	0.0809	0.0382	0.0180	0.0157	
32	Saturday, May 30, 2009	0.0507	0.0385	-0.0020	0.0616	0.0380	0.0130	0.0800	0.0380	0.0110	0.0073	
35	Tuesday, June 02, 2009	0.0500	0.0381	-0.0050	0.0612	0.0380	0.0090	0.0797	0.0380	0.0080	0.0040	
42	Tuesday, June 09, 2009	0.0487	0.0373	-0.0100	0.0603	0.0376	0.0040	0.0787	0.0376	0.0020	-0.0013	
56	Tuesday, June 23, 2009	0.0462	0.0351	-0.0130	0.0573	0.0351	-0.0010	0.0758	0.0351	-0.0020	-0.0053	
84	Tuesday, July 21, 2009	0.0446	0.0351	-0.0290	0.0558	0.0351	-0.0160	0.0743	0.0351	-0.0170	-0.0207	
140	Tuesday, September 15, 2009	0.0436	0.0348	-0.0360	0.0548	0.0348	-0.0230	0.0733	0.0348	-0.0240	-0.0277	
252	Tuesday, January 05, 2010	0.0433	0.0351	-0.0420	0.0547	0.0351	-0.0270	0.0731	0.0351	-0.0290	-0.0327	
476	Tuesday, August 17, 2010	0.1087	0.1000	-0.0370	0.1201	0.1000	-0.0220	0.1384	0.1000	-0.0250	-0.0280	

Note: Lowest Reading Value Recorded (Minimum)

				PERMEABI	LITY - ASTM C 1	202				
		Specimen P1	Specimen P1			Specimen P2	Specimen P2			
		Diameter 1	Diameter 2	Measured	Adjusted	Diameter 1	Diameter 2	Measured		Average
Specimen Age	Test date	(.001 in.)	(.001 in.)	Coulombs	Coulombs	(.001 in.)	(.001 in.)	Coulombs	Adjusted Coulombs	Coulombs
29	Wednesday, May 27, 2009	3.995	4.021	3409	2984	4.011	3.998	2932	2571	2778
91	Tuesday, July 28, 2009	3.999	4.015	1416	1240	4.012	4.008	1377	1204	1222
365	Wednesday, April 28, 2010	3.998	4.012	786	689	4.006	4.007	669	586	638

278 COMMERCE PARK DRIVE RIDGELAND, MS 39157

 BCD JOB NO.
 080739

 Mix Number
 Mix 19

 Mix Date
 Tuesday, May 05, 2009

 Mix Time
 10:46 AM

				SHRI	NKAGE TES	TING - AST	M C157					
	Reference Bar Length (in.)						NITIAL READ	DINGS				
	10		Reference			Reference						
	10	Specimen 1	Bar 1	Δ Length 1	Specimen 2	Bar 2	Δ Length 2	Specimen 3	Reference Bar 3	Δ Length 3	Average	
Specimen Age	Test date	(.0001 in.)	(.0001 in.)	Inches	(.0001 in.)	(.0001 in.)	Inches	(.0001 in.)	(.0001 in.)	Inches	Inches	
1	Wednesday, May 06, 2009	0.0903	0.0391	0.0512	0.0562	0.0391	0.0171	0.0602	0.0391	0.0211	0.0298	
						LENGTH	CHANGE CA	ALCULATION	IS			
			Reference			Reference						
		Specimen 1	Bar 1	Δ Length 1	Specimen 2	Bar 2	Δ Length 2	Specimen 3	Reference Bar 3	Δ Length 3	Average	
		(.0001 in.)	(.0001 in.)	(0.001%)	(.0001 in.)	(.0001 in.)	(0.001%)	(.0001 in.)	(.0001 in.)	(0.001%)	(.01%)	
28	Tuesday, June 02, 2009	0.0892	0.0379	0.0010	0.0550	0.0379	0.0000	0.0588	0.0379	-0.0020	-0.0003	
32	Saturday, June 06, 2009	0.0887	0.0381	-0.0060	0.0544	0.0381	-0.0080	0.0583	0.0381	-0.0090	-0.0077	
35	Tuesday, June 09, 2009	0.0883	0.0373	-0.0020	0.0539	0.0376	-0.0080	0.0575	0.0376	-0.0120	-0.0073	
42	Tuesday, June 16, 2009	0.0853	0.0352	-0.0110	0.0509	0.0352	-0.0140	0.0546	0.0352	-0.0170	-0.0140	
56	Tuesday, June 30, 2009	0.0846	0.0352	-0.0180	0.0503	0.0352	-0.0200	0.0539	0.0352	-0.0240	-0.0207	
84	Tuesday, July 28, 2009	0.0826	0.0351	-0.0370	0.0483	0.0351	-0.0390	0.0523	0.0351	-0.0390	-0.0383	
140	Tuesday, September 22, 2009	0.0817	0.0348	-0.0430	0.0475	0.0348	-0.0440	0.0514	0.0348	-0.0450	-0.0440	
252	Tuesday, January 12, 2010	0.0814	0.0348	-0.0460	0.0472	0.0348	-0.0470	0.0510	0.0348	-0.0490	-0.0473	
476	Tuesday, August 24, 2010	0.1469	0.1001	-0.0440	0.1124	0.1001	-0.0480	0.1166	0.1001	-0.0460	-0.0460	

Note: Lowest Reading Value Recorded (Minimum)

				PERMEABI	LITY - ASTM C 1	202				
		Specimen P1	Specimen P1			Specimen P2	Specimen P2			
		Diameter 1	Diameter 2	Measured	Adjusted	Diameter 1	Diameter 2	Measured		Average
Specimen Age	Test date	(.001 in.)	(.001 in.)	Coulombs	Coulombs	(.001 in.)	(.001 in.)	Coulombs	Adjusted Coulombs	Coulombs
28	Tuesday, June 02, 2009	4.016	4.013	2328	2031	4.011	4.021	2508	2187	2109
91	Tuesday, August 04, 2009	4.015	4.016	2198	1917	4.012	4.017	2080	1815	1866
365	Wednesday, May 05, 2010	4.007	4.011	1964	1718	4.008	4.012	1729	1512	1615

278 COMMERCE PARK DRIVE RIDGELAND, MS 39157

 BCD JOB NO.
 080739

 Mix Number
 Mix 20.1

 Mix Date
 Tuesday, May 12, 2009

 Mix Time
 9:44 AM

				SHRI	NKAGE TES	TING - AST	M C157					
	Reference Bar Length (in.)						NITIAL READ	DINGS				
	10		Reference			Reference					, , , , , , , , , , , , , , , , , , ,	
	10	Specimen 1	Bar 1	Δ Length 1	Specimen 2	Bar 2	Δ Length 2	Specimen 3	Reference Bar 3	Δ Length 3	Average	
Specimen Age	Test date	(.0001 in.)	(.0001 in.)	Inches	(.0001 in.)	(.0001 in.)	Inches	(.0001 in.)	(.0001 in.)	Inches	Inches	
1	Wednesday, May 13, 2009	0.0342	0.0392	-0.0050	0.0710	0.0392	0.0318	0.0737	0.0392	0.0345	0.0204	
						LENGTH	CHANGE CA	ALCULATION	IS			
			Reference			Reference					[
		Specimen 1	Bar 1	Δ Length 1	Specimen 2	Bar 2	Δ Length 2	Specimen 3	Reference Bar 3	Δ Length 3	Average	
		(.0001 in.)	(.0001 in.)	(0.001%)	(.0001 in.)	(.0001 in.)	(0.001%)	(.0001 in.)	(.0001 in.)	(0.001%)	(.01%)	
28	Tuesday, June 09, 2009	0.0326	0.0373	0.0030	0.0697	0.0374	0.0050	0.0698	0.0378	-0.0250	-0.0057	
32	Saturday, June 13, 2009	0.0299	0.0352	-0.0030	0.0670	0.0352	0.0000	0.0695	0.0352	-0.0020	-0.0017	
35	Tuesday, June 16, 2009	0.0295	0.0352	-0.0070	0.0667	0.0352	-0.0030	0.0691	0.0352	-0.0060	-0.0053	
42	Tuesday, June 23, 2009	0.0288	0.0351	-0.0130	0.0661	0.0351	-0.0080	0.0685	0.0351	-0.0110	-0.0107	
56	Tuesday, July 07, 2009	0.0280	0.0352	-0.0220	0.0653	0.0352	-0.0170	0.0678	0.0352	-0.0190	-0.0193	
84	Tuesday, August 04, 2009	0.0262	0.0351	-0.0390	0.0636	0.0351	-0.0330	0.0659	0.0351	-0.0370	-0.0363	
140	Tuesday, September 29, 2009	0.0253	0.0349	-0.0460	0.0627	0.0349	-0.0400	0.0650	0.0349	-0.0440	-0.0433	
252	Tuesday, January 19, 2010	0.0252	0.0350	-0.0480	0.0627	0.0350	-0.0410	0.0649	0.0350	-0.0460	-0.0450	
476	Tuesday, August 31, 2010	0.0906	0.1003	-0.0470	0.1282	0.1003	-0.0390	0.1303	0.1003	-0.0450	-0.0437	

Note: Lowest Reading Value Recorded (Minimum)

				PERMEABI	LITY - ASTM C 1	202				
		Specimen P1	Specimen P1			Specimen P2	Specimen P2			
		Diameter 1	Diameter 2	Measured	Adjusted	Diameter 1	Diameter 2	Measured		Average
Specimen Age	Test date	(.001 in.)	(.001 in.)	Coulombs	Coulombs	(.001 in.)	(.001 in.)	Coulombs	Adjusted Coulombs	Coulombs
16	Thursday, May 28, 2009	4.005	4.022	4950	4321	3.999	4.024	4410	3854	4088
91	Tuesday, August 11, 2009	4.008	4.020	1967	1717	4.001	4.012	2104	1843	1780
365	Wednesday, May 12, 2010	4.003	4.017	553	484	3.998	4.003	562	494	489

278 COMMERCE PARK DRIVE RIDGELAND, MS 39157

 BCD JOB NO.
 080739

 Mix Number
 Mix 21

 Mix Date
 Tuesday, May 05, 2009

 Mix Time
 12:56 PM

				SHRI	NKAGE TES	TING - AST	M C157					SHRINKAGE TESTING - ASTM C157													
	Reference Bar Length (in.)					I	NITIAL READ	DINGS																	
	10		Reference			Reference					_														
	10	Specimen 1	Bar 1	Δ Length 1	Specimen 2	Bar 2	Δ Length 2	Specimen 3	Reference Bar 3	Δ Length 3	Average	1													
Specimen Age	Test date	(.0001 in.)	(.0001 in.)	Inches	(.0001 in.)	(.0001 in.)	Inches	(.0001 in.)	(.0001 in.)	Inches	Inches	1													
1	Wednesday, May 06, 2009	0.0830	0.0391	0.0439	0.0884	0.0391	0.0493	0.0620	0.0391	0.0229	0.0387														
						LENGTH	CHANGE CA	LCULATION	S																
			Reference			Reference																			
		Specimen 1	Bar 1	Δ Length 1	Specimen 2	Bar 2	Δ Length 2	Specimen 3	Reference Bar 3	Δ Length 3	Average														
		(.0001 in.)	(.0001 in.)	(0.001%)	(.0001 in.)	(.0001 in.)	(0.001%)	(.0001 in.)	(.0001 in.)	(0.001%)	(.01%)														
28	Tuesday, June 02, 2009	0.0821	0.0379	0.0030	0.0887	0.0379	0.0150	0.0619	0.0379	0.0110	0.0097														
32	Saturday, June 06, 2009	0.0820	0.0386	-0.0050	0.0880	0.0381	0.0060	0.0613	0.0382	0.0020	0.0010														
35	Tuesday, June 09, 2009	0.0809	0.0373	-0.0030	0.0867	0.0373	0.0010	0.0602	0.0373	0.0000	-0.0007														
42	Tuesday, June 16, 2009	0.0783	0.0352	-0.0080	0.0844	0.0352	-0.0010	0.0577	0.0352	-0.0040	-0.0043														
56	Tuesday, June 30, 2009	0.0777	0.0352	-0.0140	0.0840	0.0352	-0.0050	0.0572	0.0352	-0.0090	-0.0093														
84	Tuesday, July 28, 2009	0.0759	0.0351	-0.0310	0.0824	0.0351	-0.0200	0.0556	0.0351	-0.0240	-0.0250														
140	Tuesday, September 22, 2009	0.0751	0.0348	-0.0360	0.0816	0.0348	-0.0250	0.0548	0.0348	-0.0290	-0.0300														
252	Tuesday, January 12, 2010	0.0750	0.0348	-0.0370	0.0815	0.0348	-0.0260	0.0548	0.0348	-0.0290	-0.0307														
476	Tuesday, August 24, 2010	0.1407	0.1001	-0.0330	0.1471	0.1001	-0.0230	0.1204	0.1001	-0.0260	-0.0273														

Note: Lowest Reading Value Recorded (Minimum)

PERMEABILITY - ASTM C 1202													
		Specimen P1	Specimen P1			Specimen P2	Specimen P2						
		Diameter 1	Diameter 2	Measured	Adjusted	Diameter 1	Diameter 2	Measured		Average			
Specimen Age	Test date	(.001 in.)	(.001 in.)	Coulombs	Coulombs	(.001 in.)	(.001 in.)	Coulombs	Adjusted Coulombs	Coulombs			
28	Tuesday, June 02, 2009	3.996	4.023	2328	2036	4.019	4.008	2462	2149	2093			
91	Tuesday, August 04, 2009	4.000	4.018	893	781	4.012	4.170	820	689	735			
365	Wednesday, May 05, 2010	3.999	4.003	292	257	4.003	4.012	336	294	275			

278 COMMERCE PARK DRIVE RIDGELAND, MS 39157

 BCD JOB NO.
 080739

 Mix Number
 Mix 22

 Mix Date
 Thursday, May 07, 2009

 Mix Time
 9:04 AM

	SHRINKAGE TESTING - ASTM C157													
	Reference Bar Length (in.)						NITIAL READ	DINGS						
	10		Reference			Reference					•			
		Specimen 1	Bar 1	Δ Length 1	Specimen 2	Bar 2	Δ Length 2	Specimen 3	Reference Bar 3	Δ Length 3	Average	1		
Specimen Age	Test date	(.0001 in.)	(.0001 in.)	Inches	(.0001 in.)	(.0001 in.)	Inches	(.0001 in.)	(.0001 in.)	Inches	Inches	1		
1	Friday, May 08, 2009	0.1553	0.0392	0.1161	0.0603	0.0392	0.0211	0.0893	0.0392	0.0501	0.0624	1		
						LENGTH	CHANGE CA	LCULATION	S					
			Reference			Reference								
		Specimen 1	Bar 1	Δ Length 1	Specimen 2	Bar 2	Δ Length 2	Specimen 3	Reference Bar 3	Δ Length 3	Average			
		(.0001 in.)	(.0001 in.)	(0.001%)	(.0001 in.)	(.0001 in.)	(0.001%)	(.0001 in.)	(.0001 in.)	(0.001%)	(.01%)			
28	Thursday, June 04, 2009	0.1564	0.0383	0.0200	0.0614	0.0383	0.0200	0.0918	0.0383	0.0340	0.0247			
32	Monday, June 08, 2009	0.1530	0.0359	0.0100	0.0588	0.0363	0.0140	0.0907	0.0363	0.0430	0.0223			
35	Thursday, June 11, 2009	0.1525	0.0349	0.0150	0.0601	0.0350	0.0400	0.0888	0.0350	0.0370	0.0307			
42	Thursday, June 18, 2009	0.1521	0.0351	0.0090	0.0571	0.0351	0.0090	0.0874	0.0351	0.0220	0.0133			
56	Thursday, July 02, 2009	0.1517	0.0352	0.0040	0.0568	0.0352	0.0050	0.0870	0.0352	0.0170	0.0087			
84	Thursday, July 30, 2009	0.1501	0.0352	-0.0120	0.0553	0.0352	-0.0100	0.0854	0.0352	0.0010	-0.0070			
140	Thursday, September 24, 2009	0.1491	0.0349	-0.0190	0.0543	0.0349	-0.0170	0.0844	0.0349	-0.0060	-0.0140			
252	Thursday, January 14, 2010	0.1489	0.0350	-0.0220	0.0540	0.0350	-0.0210	0.0843	0.0350	-0.0080	-0.0170			
476	Thursday, August 26, 2010	0.2145	0.1001	-0.0170	0.1190	0.1001	-0.0220	0.1499	0.1001	-0.0030	-0.0140			

Note: Lowest Reading Value Recorded (Minimum)

PERMEABILITY - ASTM C 1202													
		Specimen P1	Specimen P1			Specimen P2	Specimen P2						
		Diameter 1	Diameter 2	Measured	Adjusted	Diameter 1	Diameter 2	Measured		Average			
Specimen Age	Test date	(.001 in.)	(.001 in.)	Coulombs	Coulombs	(.001 in.)	(.001 in.)	Coulombs	Adjusted Coulombs	Coulombs			
28	Thursday, June 04, 2009	4.015	4.030	968	841	4.020	4.012	868	757	799			
91	Thursday, August 06, 2009	4.013	4.028	553	481	4.015	4.019	522	455	468			
365	Friday, May 07, 2010	4.013	4.019	410	357	4.017	4.011	368	321	339			

278 COMMERCE PARK DRIVE RIDGELAND, MS 39157

 BCD JOB NO.
 080739

 Mix Number
 Mix 23.1

 Mix Date
 Thursday, August 06, 2009

12:00 PM

Mix Time

SHRINKAGE TESTING - ASTM C157 INITIAL READINGS Reference Bar Length (in.) Reference Reference 10 Bar 2 Δ Length 2 Specimen 3 Reference Bar 3 Specimen 1 Bar 1 Δ Length 1 Specimen 2 ∆ Length 3 Average Specimen Age Test date (.0001 in.) (.0001 in.) Inches (.0001 in.) (.0001 in.) Inches (.0001 in.) (.0001 in.) Inches Inches Friday, August 07, 2009 0.0312 0.0350 -0.0038 0.0385 0.0350 0.0035 0.0378 0.0350 0.0028 0.0008 1 LENGTH CHANGE CALCULATIONS Reference Reference ∆ Length 1 Bar 2 Δ Length 2 Specimen 3 Reference Bar 3 ∆ Length 3 Specimen 1 Bar 1 Specimen 2 Average (.0001 in.) (.0001 in.) (0.001%) (.0001 in.) (.0001 in.) (0.001%) (.0001 in.) (.0001 in.) (0.001%) (.01%) 0.0312 0.0348 0.0020 0.0384 0.0348 0.0010 0.0374 0.0348 -0.0020 0.0003 28 Thursday, September 03, 2009 0.0302 0.0349 0.0375 0.0349 -0.0090 0.0365 0.0349 -0.0120 32 Monday, September 07, 2009 -0.0090 -0.0100 35 Thursday, September 10, 2009 0.0300 0.0349 -0.0110 0.0373 0.0349 -0.0110 0.0363 0.0349 -0.0140 -0.0120 42 Thursday, September 17, 2009 0.0296 0.0348 -0.0140 0.0367 0.0348 -0.0160 0.0358 0.0348 -0.0180 -0.0160 -0.0240 -0.0240 0.0350 56 Thursday, October 01, 2009 0.0288 0.0350 0.0361 0.0350 0.0351 -0.0270 -0.0250 84 -0.0320 0.0346 0.0350 Thursday, October 29, 2009 0.0280 0.0350 -0.0320 0.0353 0.0350 -0.0320 -0.0320 140 Thursday, December 24, 2009 0.0274 0.0350 -0.0380 0.0347 0.0350 -0.0380 0.0337 0.0350 -0.0410 -0.0390 252 Thursday, April 15, 2010 0.0269 0.0348 -0.0410 0.0342 0.0348 -0.0410 0.0332 0.0348 -0.0440 -0.0420 476 Thursday, November 25, 2010 0.0948 0.1022 -0.0360 0.1023 0.1022 -0.0340 0.1014 0.1022 -0.0360 -0.0353

Note: Lowest Reading Value Recorded (Minimum)

PERMEABILITY - ASTM C 1202													
		Specimen P1	Specimen P1			Specimen P2	Specimen P2						
		Diameter 1	Diameter 2	Measured	Adjusted	Diameter 1	Diameter 2	Measured		Average			
Specimen Age	Test date	(.001 in.)	(.001 in.)	Coulombs	Coulombs	(.001 in.)	(.001 in.)	Coulombs	Adjusted Coulombs	Coulombs			
28	Thursday, September 03, 2009	3.990	4.009	2202	1936	3.995	4.001	2282	2008	1972			
91	Thursday, November 05, 2009	3.998	4.003	2015	1771	3.997	4.003	1967	1729	1750			
365	Friday, August 06, 2010	3.999	4.000	1703	1497	3.998	3.999	2111	1857	1677			

278 COMMERCE PARK DRIVE RIDGELAND, MS 39157

 BCD JOB NO.
 080739

 Mix Number
 Mix 24

 Mix Date
 Tuesday, May 12, 2009

 Mix Time
 11:40 AM

	SHRINKAGE TESTING - ASTM C157													
	Reference Bar Length (in.)						NITIAL READ	DINGS						
	10		Reference			Reference								
	10	Specimen 1	Bar 1	Δ Length 1	Specimen 2	Bar 2	Δ Length 2	Specimen 3	Reference Bar 3	Δ Length 3	Average			
Specimen Age	Test date	(.0001 in.)	(.0001 in.)	Inches	(.0001 in.)	(.0001 in.)	Inches	(.0001 in.)	(.0001 in.)	Inches	Inches	1		
1	Wednesday, May 13, 2009	0.0875	0.0392	0.0483	0.0970	0.0392	0.0578	0.0932	0.0392	0.0540	0.0534			
						LENGTH	CHANGE CA	LCULATION	IS					
			Reference			Reference								
		Specimen 1	Bar 1	Δ Length 1	Specimen 2	Bar 2	Δ Length 2	Specimen 3	Reference Bar 3	Δ Length 3	Average			
		(.0001 in.)	(.0001 in.)	(0.001%)	(.0001 in.)	(.0001 in.)	(0.001%)	(.0001 in.)	(.0001 in.)	(0.001%)	(.01%)			
28	Tuesday, June 09, 2009	0.0862	0.0378	0.0010	0.0957	0.0378	0.0010	0.0933	0.0378	0.0150	0.0057			
32	Saturday, June 13, 2009	0.0829	0.0352	-0.0060	0.0924	0.0352	-0.0060	0.0900	0.0352	0.0080	-0.0013			
35	Tuesday, June 16, 2009	0.0825	0.0352	-0.0100	0.0920	0.0352	-0.0100	0.0896	0.0352	0.0040	-0.0053			
42	Tuesday, June 23, 2009	0.0818	0.0351	-0.0160	0.0914	0.0351	-0.0150	0.0890	0.0351	-0.0010	-0.0107			
56	Tuesday, July 07, 2009	0.0811	0.0352	-0.0240	0.0907	0.0352	-0.0230	0.0883	0.0352	-0.0090	-0.0187			
84	Tuesday, August 04, 2009	0.0794	0.0351	-0.0400	0.0890	0.0351	-0.0390	0.0864	0.0351	-0.0270	-0.0353			
140	Tuesday, September 29, 2009	0.0786	0.0349	-0.0460	0.0883	0.0349	-0.0440	0.0857	0.0349	-0.0320	-0.0407			
252	Tuesday, January 19, 2010	0.0785	0.0350	-0.0480	0.0882	0.0350	-0.0460	0.0857	0.0350	-0.0330	-0.0423			
476	Tuesday, August 31, 2010	0.1439	0.1004	-0.0480	0.1537	0.1004	-0.0450	0.1513	0.1004	-0.0310	-0.0413			

Note: Lowest Reading Value Recorded (Minimum)

PERMEABILITY - ASTM C 1202													
		Specimen P1	Specimen P1			Specimen P2	Specimen P2						
		Diameter 1	Diameter 2	Measured	Adjusted	Diameter 1	Diameter 2	Measured		Average			
Specimen Age	Test date	(.001 in.)	(.001 in.)	Coulombs	Coulombs	(.001 in.)	(.001 in.)	Coulombs	Adjusted Coulombs	Coulombs			
28	Tuesday, June 09, 2009	4.026	4.010	2420	2108	3.988	4.035	2036	1779	1944			
91	Tuesday, August 11, 2009	4.009	4.020	1085	947	4.029	4.007	1211	1055	1001			
365	Wednesday, May 12, 2010	4.011	4.008	1183	1035	4.005	3.999	1140	1001	1018			

278 COMMERCE PARK DRIVE RIDGELAND, MS 39157

 BCD JOB NO.
 080739

 Mix Number
 Mix 25

 Mix Date
 Thursday, May 14, 2009

 Mix Time
 9:18 AM

	SHRINKAGE TESTING - ASTM C157													
	Reference Bar Length (in.)						NITIAL READ	DINGS						
	10		Reference			Reference					-			
	10	Specimen 1	Bar 1	Δ Length 1	Specimen 2	Bar 2	Δ Length 2	Specimen 3	Reference Bar 3	Δ Length 3	Average	1		
Specimen Age	Test date	(.0001 in.)	(.0001 in.)	Inches	(.0001 in.)	(.0001 in.)	Inches	(.0001 in.)	(.0001 in.)	Inches	Inches			
1	Friday, May 15, 2009	0.0745	0.0392	0.0353	0.1181	0.0391	0.0790	0.0794	0.0391	0.0403	0.0515			
			LENGTH CHANGE CALCULATIONS											
			Reference			Reference								
		Specimen 1	Bar 1	Δ Length 1	Specimen 2	Bar 2	Δ Length 2	Specimen 3	Reference Bar 3	Δ Length 3	Average			
		(.0001 in.)	(.0001 in.)	(0.001%)	(.0001 in.)	(.0001 in.)	(0.001%)	(.0001 in.)	(.0001 in.)	(0.001%)	(.01%)			
28	Thursday, June 11, 2009	0.0710	0.0351	0.0060	0.1150	0.0351	0.0090	0.0765	0.0351	0.0110	0.0087			
32	Monday, June 15, 2009	0.0702	0.0351	-0.0020	0.1141	0.0351	0.0000	0.0757	0.0351	0.0030	0.0003			
35	Thursday, June 18, 2009	0.0699	0.0351	-0.0050	0.1139	0.0351	-0.0020	0.0754	0.0351	0.0000	-0.0023			
42	Thursday, June 25, 2009	0.0695	0.0352	-0.0100	0.1135	0.0352	-0.0070	0.0750	0.0352	-0.0050	-0.0073			
56	Thursday, July 09, 2009	0.0681	0.0352	-0.0240	0.1120	0.0352	-0.0220	0.0734	0.0352	-0.0210	-0.0223			
84	Thursday, August 06, 2009	0.0674	0.0351	-0.0300	0.1113	0.0351	-0.0280	0.0727	0.0351	-0.0270	-0.0283			
140	Thursday, October 01, 2009	0.0667	0.0349	-0.0350	0.1106	0.0349	-0.0330	0.0720	0.0349	-0.0320	-0.0333			
252	Thursday, January 21, 2010	0.0655	0.0350	-0.0480	0.1104	0.0350	-0.0360	0.0716	0.0350	-0.0370	-0.0403			
476	Thursday, September 02, 2010	0.1321	0.1002	-0.0340	0.1758	0.1002	-0.0340	0.1372	0.1002	-0.0330	-0.0337			

Note: Lowest Reading Value Recorded (Minimum)

PERMEABILITY - ASTM C 1202													
		Specimen P1	Specimen P1			Specimen P2	Specimen P2						
		Diameter 1	Diameter 2	Measured	Adjusted	Diameter 1	Diameter 2	Measured		Average			
Specimen Age	Test date	(.001 in.)	(.001 in.)	Coulombs	Coulombs	(.001 in.)	(.001 in.)	Coulombs	Adjusted Coulombs	Coulombs			
28	Thursday, June 11, 2009	4.008	4.023	2147	1872	4.025	4.000	2276	1988	1930			
91	Thursday, August 13, 2009	4.011	4.026	692	603	3.997	4.018	711	623	613			
365	Friday, May 14, 2010	4.009	4.015	206	180	3.999	4.003	250	220	200			

278 COMMERCE PARK DRIVE RIDGELAND, MS 39157

 BCD JOB NO.
 080739

 Mix Number
 Mix 26

 Mix Date
 Thursday, May 14, 2009

 Mix Time
 10:30 AM

	SHRINKAGE TESTING - ASTM C157													
	Reference Bar Length (in.)						NITIAL READ	DINGS						
	10		Reference			Reference								
	10	Specimen 1	Bar 1	Δ Length 1	Specimen 2	Bar 2	Δ Length 2	Specimen 3	Reference Bar 3	Δ Length 3	Average			
Specimen Age	Test date	(.0001 in.)	(.0001 in.)	Inches	(.0001 in.)	(.0001 in.)	Inches	(.0001 in.)	(.0001 in.)	Inches	Inches			
1	Friday, May 15, 2009	0.0758	0.0391	0.0367	0.0658	0.0391	0.0267	0.0802	0.0392	0.0410	0.0348			
						LENGTH	CHANGE CA	ALCULATION	S					
			Reference			Reference								
		Specimen 1	Bar 1	Δ Length 1	Specimen 2	Bar 2	Δ Length 2	Specimen 3	Reference Bar 3	Δ Length 3	Average			
		(.0001 in.)	(.0001 in.)	(0.001%)	(.0001 in.)	(.0001 in.)	(0.001%)	(.0001 in.)	(.0001 in.)	(0.001%)	(.01%)			
28	Thursday, June 11, 2009	0.0731	0.0351	0.0130	0.0635	0.0351	0.0170	0.0763	0.0351	0.0020	0.0107			
32	Monday, June 15, 2009	0.0727	0.0351	0.0090	0.0632	0.0351	0.0140	0.0760	0.0351	-0.0010	0.0073			
35	Thursday, June 18, 2009	0.0726	0.0351	0.0080	0.0630	0.0351	0.0120	0.0758	0.0351	-0.0030	0.0057			
42	Thursday, June 25, 2009	0.0724	0.0352	0.0050	0.0627	0.0351	0.0090	0.0756	0.0352	-0.0060	0.0027			
56	Thursday, July 09, 2009	0.0712	0.0352	-0.0070	0.0612	0.0352	-0.0070	0.0744	0.0352	-0.0180	-0.0107			
84	Thursday, August 06, 2009	0.0707	0.0351	-0.0110	0.0605	0.0351	-0.0130	0.0739	0.0351	-0.0220	-0.0153			
140	Thursday, October 01, 2009	0.0699	0.0349	-0.0170	0.0596	0.0349	-0.0200	0.0731	0.0349	-0.0280	-0.0217			
252	Thursday, January 21, 2010	0.0693	0.0350	-0.0240	0.0589	0.0350	-0.0280	0.0724	0.0350	-0.0360	-0.0293			
476	Thursday, September 02, 2010	0.1348	0.1002	-0.0210	0.1241	0.1002	-0.0280	0.1378	0.1002	-0.0340	-0.0277			

Note: Lowest Reading Value Recorded (Minimum)

	PERMEABILITY - ASTM C 1202														
		Specimen P1	Specimen P1			Specimen P2	Specimen P2								
		Diameter 1	Diameter 2	Measured	Adjusted	Diameter 1	Diameter 2	Measured		Average					
Specimen Age	Test date	(.001 in.)	(.001 in.)	Coulombs	Coulombs	(.001 in.)	(.001 in.)	Coulombs	Adjusted Coulombs	Coulombs					
28	Thursday, June 11, 2009	4.008	4.020	440	384	4.023	4.005	531	463	424					
91	Thursday, August 13, 2009	4.001	4.019	NA	NA	4.008	4.026	333	290	290	Р1				
365	Friday, May 14, 2010	4.003	4.012	206	180	4.011	4.007	235	206	193					

278 COMMERCE PARK DRIVE RIDGELAND, MS 39157

 BCD JOB NO.
 080739

 Mix Number
 Mix 27.1

 Mix Date
 Thursday, June 04, 2009

 Mix Time
 10:10 AM

	SHRINKAGE TESTING - ASTM C157													
	Reference Bar Length (in.)						NITIAL READ	DINGS						
	10		Reference			Reference								
	10	Specimen 1	Bar 1	Δ Length 1	Specimen 2	Bar 2	Δ Length 2	Specimen 3	Reference Bar 3	Δ Length 3	Average			
Specimen Age	Test date	(.0001 in.)	(.0001 in.)	Inches	(.0001 in.)	(.0001 in.)	Inches	(.0001 in.)	(.0001 in.)	Inches	Inches			
1	Friday, June 05, 2009	0.0602	0.0382	0.0220	0.0465	0.0383	0.0082	0.0623	0.0383	0.0240	0.0181			
						LENGTH	CHANGE CA	ALCULATION	S					
			Reference			Reference								
		Specimen 1	Bar 1	Δ Length 1	Specimen 2	Bar 2	Δ Length 2	Specimen 3	Reference Bar 3	Δ Length 3	Average			
		(.0001 in.)	(.0001 in.)	(0.001%)	(.0001 in.)	(.0001 in.)	(0.001%)	(.0001 in.)	(.0001 in.)	(0.001%)	(.01%)			
28	Thursday, July 02, 2009	0.0572	0.0352	0.0000	0.0441	0.0352	0.0070	0.0593	0.0352	0.0010	0.0027			
32	Monday, July 06, 2009	0.0562	0.0352	-0.0100	0.0431	0.0352	-0.0030	0.0584	0.0352	-0.0080	-0.0070			
35	Thursday, July 09, 2009	0.0550	0.0352	-0.0220	0.0419	0.0352	-0.0150	0.0572	0.0352	-0.0200	-0.0190			
42	Thursday, July 16, 2009	0.0544	0.0350	-0.0260	0.0412	0.0350	-0.0200	0.0567	0.0350	-0.0230	-0.0230			
56	Thursday, July 30, 2009	0.0539	0.0352	-0.0330	0.0406	0.0352	-0.0280	0.0562	0.0352	-0.0300	-0.0303			
84	Thursday, August 27, 2009	0.0528	0.0349	-0.0410	0.0401	0.0349	-0.0300	0.0552	0.0349	-0.0370	-0.0360			
140	Thursday, October 22, 2009	0.0521	0.0350	-0.0490	0.0388	0.0350	-0.0440	0.0544	0.0350	-0.0460	-0.0463			
252	Thursday, February 11, 2010	0.0517	0.0348	-0.0510	0.0385	0.0348	-0.0450	0.0541	0.0348	-0.0470	-0.0477			
476	Thursday, September 23, 2010	0.1169	0.0998	-0.0490	0.1042	0.0998	-0.0380	0.1195	0.0998	-0.0430	-0.0433			

Note: Lowest Reading Value Recorded (Minimum)

PERMEABILITY - ASTM C 1202												
		Specimen P1	Specimen P1			Specimen P2	Specimen P2					
		Diameter 1	Diameter 2	Measured	Adjusted	Diameter 1	Diameter 2	Measured		Average		
Specimen Age	Test date	(.001 in.)	(.001 in.)	Coulombs	Coulombs	(.001 in.)	(.001 in.)	Coulombs	Adjusted Coulombs	Coulombs		
28	Thursday, July 02, 2009	4.009	4.017	2649	2313	4.008	4.013	3950	3454	2883		
91	Thursday, September 03, 2009	3.991	3.986	1985	1755	3.991	3.990	1870	1651	1703		
400	Friday, July 09, 2010	3.999	4.007	1352	1187	3.997	4.002	1355	1191	1189		

278 COMMERCE PARK DRIVE RIDGELAND, MS 39157

 BCD JOB NO.
 080739

 Mix Number
 Mix 28

 Mix Date
 Tuesday, May 19, 2009

 Mix Time
 11:07 AM

SHRINKAGE TESTING - ASTM C157												
	Reference Bar Length (in.)						NITIAL READ	DINGS				
	10		Reference			Reference						
	10	Specimen 1	Bar 1	Δ Length 1	Specimen 2	Bar 2	Δ Length 2	Specimen 3	Reference Bar 3	Δ Length 3	Average	
Specimen Age	Test date	(.0001 in.)	(.0001 in.)	Inches	(.0001 in.)	(.0001 in.)	Inches	(.0001 in.)	(.0001 in.)	Inches	Inches	
1	Wednesday, May 20, 2009	0.1312	0.0383	0.0929	0.0881	0.0383	0.0498	0.0682	0.0383	0.0299	0.0575	
						LENGTH	CHANGE CA	ALCULATION	S			
			Reference			Reference						
		Specimen 1	Bar 1	Δ Length 1	Specimen 2	Bar 2	Δ Length 2	Specimen 3	Reference Bar 3	Δ Length 3	Average	
		(.0001 in.)	(.0001 in.)	(0.001%)	(.0001 in.)	(.0001 in.)	(0.001%)	(.0001 in.)	(.0001 in.)	(0.001%)	(.01%)	
28	Tuesday, June 16, 2009	0.1283	0.0351	0.0030	0.0854	0.0351	0.0050	0.0654	0.0351	0.0040	0.0040	
32	Saturday, June 20, 2009	0.1275	0.0351	-0.0050	0.0846	0.0351	-0.0030	0.0646	0.0351	-0.0040	-0.0040	
35	Tuesday, June 23, 2009	0.1272	0.0351	-0.0080	0.0843	0.0351	-0.0060	0.0644	0.0351	-0.0060	-0.0067	
42	Tuesday, June 30, 2009	0.1268	0.0352	-0.0130	0.0840	0.0352	-0.0100	0.0640	0.0352	-0.0110	-0.0113	
56	Tuesday, July 14, 2009	0.1252	0.0352	-0.0290	0.0824	0.0352	-0.0260	0.0625	0.0352	-0.0260	-0.0270	
84	Tuesday, August 11, 2009	0.1243	0.0349	-0.0350	0.0815	0.0349	-0.0320	0.0614	0.0349	-0.0340	-0.0337	
140	Tuesday, October 06, 2009	0.1235	0.0349	-0.0430	0.0807	0.0349	-0.0400	0.0607	0.0349	-0.0410	-0.0413	
252	Tuesday, January 26, 2010	0.1234	0.0349	-0.0440	0.0805	0.0349	-0.0420	0.0605	0.0349	-0.0430	-0.0430	
476	Tuesday, September 07, 2010	0.1888	0.0999	-0.0400	0.1458	0.0999	-0.0390	0.1261	0.0999	-0.0370	-0.0387	

Note: Lowest Reading Value Recorded (Minimum)

PERMEABILITY - ASTM C 1202												
		Specimen P1	Specimen P1			Specimen P2	Specimen P2					
		Diameter 1	Diameter 2	Measured	Adjusted	Diameter 1	Diameter 2	Measured		Average		
Specimen Age	Test date	(.001 in.)	(.001 in.)	Coulombs	Coulombs	(.001 in.)	(.001 in.)	Coulombs	Adjusted Coulombs	Coulombs		
28	Tuesday, June 16, 2009	4.012	4.019	3026	2639	4.014	4.023	3224	2808	2723		
91	Tuesday, August 18, 2009	4.010	3.991	1197	1052	3.998	4.025	1263	1104	1078		
365	Wednesday, May 19, 2010	4.011	4.002	368	322	3.997	3.999	370	326	324		

278 COMMERCE PARK DRIVE RIDGELAND, MS 39157

 BCD JOB NO.
 080739

 Mix Number
 Mix 29

 Mix Date
 Tuesday, May 26, 2009

 Mix Time
 10:28 AM

SHRINKAGE TESTING - ASTM C157												
	Reference Bar Length (in.)						NITIAL READ	DINGS				
	10		Reference			Reference						
	10	Specimen 1	Bar 1	Δ Length 1	Specimen 2	Bar 2	Δ Length 2	Specimen 3	Reference Bar 3	Δ Length 3	Average	l
Specimen Age	Test date	(.0001 in.)	(.0001 in.)	Inches	(.0001 in.)	(.0001 in.)	Inches	(.0001 in.)	(.0001 in.)	Inches	Inches	1
1	Wednesday, May 27, 2009	0.1041	0.0382	0.0659	0.0367	0.0382	-0.0015	0.0704	0.0382	0.0322	0.0322	
		LENGTH CHANGE CALCULATIONS										
			Reference			Reference						
		Specimen 1	Bar 1	Δ Length 1	Specimen 2	Bar 2	Δ Length 2	Specimen 3	Reference Bar 3	Δ Length 3	Average	
		(.0001 in.)	(.0001 in.)	(0.001%)	(.0001 in.)	(.0001 in.)	(0.001%)	(.0001 in.)	(.0001 in.)	(0.001%)	(.01%)	
28	Tuesday, June 23, 2009	0.1018	0.0351	0.0080	0.0333	0.0351	-0.0030	0.0682	0.0351	0.0090	0.0047	
32	Saturday, June 27, 2009	0.1011	0.0352	0.0000	0.0326	0.0352	-0.0110	0.0675	0.0352	0.0010	-0.0033	
35	Tuesday, June 30, 2009	0.1008	0.0352	-0.0030	0.0323	0.0352	-0.0140	0.0672	0.0352	-0.0020	-0.0063	
42	Tuesday, July 07, 2009	0.1003	0.0352	-0.0080	0.0318	0.0352	-0.0190	0.0667	0.0352	-0.0070	-0.0113	
56	Tuesday, July 21, 2009	0.0985	0.0351	-0.0250	0.0300	0.0351	-0.0360	0.0651	0.0351	-0.0220	-0.0277	
84	Tuesday, August 18, 2009	0.0974	0.0349	-0.0340	0.0290	0.0349	-0.0440	0.0639	0.0349	-0.0320	-0.0367	
140	Tuesday, October 13, 2009	0.0966	0.0349	-0.0420	0.0282	0.0349	-0.0520	0.0632	0.0349	-0.0390	-0.0443	
252	Tuesday, February 02, 2010	0.0962	0.0349	-0.0460	0.0277	0.0349	-0.0570	0.0628	0.0349	-0.0430	-0.0487	
476	Tuesday, September 14, 2010	0.1617	0.0999	-0.0410	0.0931	0.0999	-0.0530	0.1284	0.0999	-0.0370	-0.0437	1

Note: Lowest Reading Value Recorded (Minimum)

PERMEABILITY - ASTM C 1202											
		Specimen P1	Specimen P1			Specimen P2	Specimen P2				
		Diameter 1	Diameter 2	Measured	Adjusted	Diameter 1	Diameter 2	Measured		Average	
Specimen Age	Test date	(.001 in.)	(.001 in.)	Coulombs	Coulombs	(.001 in.)	(.001 in.)	Coulombs	Adjusted Coulombs	Coulombs	
28	Tuesday, June 23, 2009	4.012	4.019	2172	1894	4.009	4.017	2102	1836	1865	
91	Tuesday, August 25, 2009	3.975	4.028	1815	1594	3.998	3.988	1817	1603	1598	
365	Wednesday, May 26, 2010	3.999	4.006	1315	1154	3.999	4.002	1404	1234	1194	
BURNS COOLEY DENNIS, INC. GEOTECHNICAL & MATERIALS CONSULTANTS

278 COMMERCE PARK DRIVE RIDGELAND, MS 39157

BUS: (601) 856-2332 FAX: (601) 856-3552

BCD JOB NO.	080739
Mix Number	Mix 30
Mix Date	Tuesday, May 26, 2009
Mix Time	3:32 PM

SHRINKAGE TESTING - ASTM C157												
	Reference Bar Length (in.)		INITIAL READINGS									
	10		Reference			Reference						
		Specimen 1	Bar 1	Δ Length 1	Specimen 2	Bar 2	Δ Length 2	Specimen 3	Reference Bar 3	Δ Length 3	Average	
Specimen Age	Test date	(.0001 in.)	(.0001 in.)	Inches	(.0001 in.)	(.0001 in.)	Inches	(.0001 in.)	(.0001 in.)	Inches	Inches	
1	Wednesday, May 27, 2009	0.1048	0.0382	0.0666	0.0468	0.0382	0.0086	0.0877	0.0382	0.0495	0.0416	
						LENGTH	CHANGE C	ALCULATIO	NS			
			Reference			Reference						
		Specimen 1	Bar 1	Δ Length 1	Specimen 2	Bar 2	Δ Length 2	Specimen 3	Reference Bar 3	Δ Length 3	Average	
		(.0001 in.)	(.0001 in.)	(0.001%)	(.0001 in.)	(.0001 in.)	(0.001%)	(.0001 in.)	(.0001 in.)	(0.001%)	(.01%)	
28	Tuesday, June 23, 2009	0.1038	0.0351	0.0210	0.0459	0.0351	0.0220	0.0851	0.0351	0.0050	0.0160	
32	Saturday, June 27, 2009	0.1035	0.0352	0.0170	0.0456	0.0352	0.0180	0.0849	0.0352	0.0020	0.0123	
35	Tuesday, June 30, 2009	0.1033	0.0352	0.0150	0.0455	0.0352	0.0170	0.0847	0.0352	0.0000	0.0107	
42	Tuesday, July 07, 2009	0.1031	0.0352	0.0130	0.0452	0.0352	0.0140	0.0844	0.0352	-0.0030	0.0080	
56	Tuesday, July 21, 2009	0.1018	0.0351	0.0010	0.0440	0.0351	0.0030	0.0831	0.0351	-0.0150	-0.0037	
84	Tuesday, August 18, 2009	0.1011	0.0349	-0.0040	0.0432	0.0349	-0.0030	0.0824	0.0349	-0.0200	-0.0090	
140	Tuesday, October 13, 2009	0.1001	0.0349	-0.0140	0.0423	0.0349	-0.0120	0.0815	0.0349	-0.0290	-0.0183	
252	Tuesday, February 02, 2010	0.0992	0.0349	-0.0230	0.0415	0.0349	-0.0200	0.0805	0.0349	-0.0390	-0.0273	
476	Tuesday, September 14, 2010	0.1644	0.0999	-0.0210	0.1067	0.0999	-0.0180	0.1454	0.0999	-0.0400	-0.0263	

Note: Lowest Reading Value Recorded (Minimum)

PERMEABILITY - ASTM C 1202											
		Specimen P1	Specimen P1			Specimen P2	Specimen P2				
		Diameter 1	Diameter 2	Measured	Adjusted	Diameter 1	Diameter 2	Measured		Average	
Specimen Age	Test date	(.001 in.)	(.001 in.)	Coulombs	Coulombs	(.001 in.)	(.001 in.)	Coulombs	Adjusted Coulombs	Coulombs	
28	Tuesday, June 23, 2009	4.017	4.013	512	447	4.018	4.005	551	482	464	
91	Tuesday, August 25, 2009	4.004	3.989	386	340	4.011	4.005	382	334	337	
365	Wednesday, May 26, 2010	4.000	4.003	270	237	4.007	4.002	301	264	251	